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Abstract

Active matter, such as a suspension of swimming cells or colloidal particles, or even a
flock of birds, consists of self-propelled units that convert stored or ambient free en-
ergy into motion. Recent advances in high-resolution imaging techniques and particle-
based simulation methods have enabled the precise characterization of the collective
dynamics in such biological and engineered active systems. In parallel, data-driven al-
gorithms for learning interpretable continuum models have shown promising potential
for the recovery of underlying partial differential equations (PDEs) from continuum
simulation data. Motivated by these advancements, in this thesis we analytically and
numerically investigate phenomenological models in the context of active fluids, and
subsequently leverage recent model learning algorithms to infer continuum models
directly from microscopic simulation and experimental video data.

First, we consider idealized two-dimensional swimmers with a fixed body shape
(‘squirmers’) to understand the impact of yield stress on the swimming characteristics
of micro-organisms. Using the Bingham constitutive law, we compute numerical flow
fields around squirmers and determine their swimming speeds. Our findings demon-
strate how yield stress localizes the flow and makes jet-based propulsion energetically
more efficient than tangential ciliary motions. Additionally, for the related problem
of non-squirming translating cylinders, we derive and provide numerical evidence for
previously unestablished analytical solutions using slipline theory from ideal plastic-
ity.

Second, we explore how a phenomenological continuum model for active suspen-
sions can provide insights into other pattern-forming systems. Motivated in part by
the complex flow patterns observed in planetary atmospheres, we investigate gener-
alized Navier–Stokes (GNS) equations that couple nonlinear advection with a generic
linear instability. This analytically tractable minimal model for fluid flows driven by
internal active stresses has recently been shown to permit exact solutions on a sta-
tionary 2D sphere. Here, we extend the analysis to linearly driven flows on rotating
spheres. We derive exact solutions of the GNS equations corresponding to time-
independent zonal jets and superposed westward-propagating Rossby waves, qualita-
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tively similar to those seen in planetary atmospheres. Direct numerical simulations
with large rotation rates obtain statistically stationary states close to these exact
solutions. The measured phase speeds of waves in the GNS simulations agree with
our analytical predictions for Rossby waves.

Finally, we address the challenge of learning macroscopic hydrodynamic equations
for active matter directly from microscopic data. Here, we present a framework that
leverages spectral basis representations and sparse regression algorithms to discover
PDE models from microscopic simulation and experimental data, while incorporat-
ing the relevant physical symmetries. We illustrate the practical potential through
applications to a chiral active particle model mimicking swimming cells and to recent
experiments of engineered active particles. In both cases, our scheme learns hydrody-
namic equations that quantitatively reproduce the self-organized collective dynamics
observed in the simulations and experiments. This inference framework makes it pos-
sible to measure a large number of hydrodynamic parameters in parallel and directly
from video data.

Overall, this thesis shows how phenomenological models for active matter can
offer dynamical insights that can be further leveraged to inform data-driven equation
discovery.

Thesis Supervisor: Jörn Dunkel
Title: Associate Professor of Mathematics
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1-1 Biological and engineered active matter. (a) A dense bacterial suspen-

sion in a microfluidic chamber exhibits collective chaotic motion with

a prominent length scale (reproduced from Wensink et al. [3]). (b)

Two-dimensional array of vortices visible in time-averaged snapshots

of swimming sperm cells (from sea urchins) due to hydrodynamic en-

trainment (from Riedel et al. [4]; reproduced with permission from

AAAS). (c) Colloidal particles submerged in a dielectric fluid undergo

electro-hydrodynamic instabilities and start to roll over a surface, thus

mimicking active particles [5]. Over a million micro-rollers are confined

within a 5 mm x 5 mm square domain, resulting in spontaneous sym-

metry breaking and the formation of four inter-woven density shocks

due to the reflections from the boundaries (Credits: Alexandre Morin,

Delphine Geyer, and Denis Bartolo). (d) Colloidal micro-magnets sus-

pended in water rotate about their axes due to an external rotating

magnetic field. They hydrodynamically interact with each other to

form macro-droplets containing hundreds of micro-magnets (from Soni

et al. [6]; reproduced with permission from Springer Nature). Scale

bars: (a) 10 𝜇m, (b) 200 𝜇m, (c) 1 mm, and (d) 100 𝜇m. . . . . . . . 32
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2-1 Comparison of the numerical solution and the slipline pattern for a

fully rough (no-slip) cylinder. (a) Color plot of the logarithm of the

strain rate (log10(�̇�)) from the numerical solution at Bi = 214 ≫ 1,

together with streamlines (blue). (b) The slipline pattern made up

of 𝛼− and 𝛽−lines (red and blue; § 2.2.3) obtained by Randolph and

Houlsby [7] (§ 2.3.1). In the white region, the 𝛼−lines form circular arcs

with center A, and in the green region, the 𝛽−lines form the involutes

to the circle. Arrows indicate the direction of motion of the cylinder.

In (a) and (b), the overall patterns and the rigid plugs (with zero

strain rate; shaded black) match except for the rigidly rotating ones

on the top and bottom of the cylinder. These residual plugs appear

due to the inconsistency of pressure change in the thin viscoplastic

boundary layer above the cylinder and the overlying plastic solution.

As described in § 2.3.2, they eventually vanish, albeit very slowly, with

increasing Bingham number Bi, thus confirming that the viscoplastic

solution converges to the plastic one. . . . . . . . . . . . . . . . . . . 51

2-2 Pressure variation over the cylinder scaled by Bi, for the Bingham

numbers indicated. The dashed line corresponds to the pressure of the

slipline solution given by (2.18); the numerical profile approaches this

solution as the Bingham number increases. The inset shows overlap-

ping profiles of 𝑝/Bi against (𝜃−𝜋/2)Bi1/7, which confirms the scaling

predicted from the boundary layer theory in appendix A.1. . . . . . 53

2-3 Scaling data for the residual rotating plug against Bi, showing (a) the

plug radius 𝑦𝑝−1 where (0, 𝑦𝑝) is the the top of the plug, (b) it’s rotation

rate 𝜔, (c) the boundary layer thickness at 𝜃 = 1
2
𝜋 and 1

3
𝜋, and (d)

the angular size of the smoothing region, estimated by the location 𝜃*

for which 𝑝 = 1
2
Bi. All these plug characteristics follow the scalings

predicted by the boundary layer theory of appendix A.1 (dashed lines). 54
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2-4 (a) Drag coefficient 𝐶𝑑 against Bi for computations using a no-slip

boundary condition (red circles) or the plastic slip law in (2.7) with

𝜚 = 1 (blue stars). The dashed line shows (2.19). (b) Plots of log10 �̇�

and streamlines for two solutions at Bi = 28; the upper half shows

the no-slip cylinder, and the lower half the cylinder with (2.7) and

𝜚 = 1. Due to the absence of the no-slip condition and the resulting

viscoplastic boundary layer against the cylinder, the rigidly rotating

plug disappears in (b, bottom) as compared to (b, top) [§ 2.3.2]. . . 54

2-5 Numerical solutions (left) showing log10 �̇� with streamlines (light blue)

and slipline solutions [right; same color scheme as in figure 2-1] for (a)

𝜚 = 0 and (b) 𝜚 = 0.5, both at Bi = 212. In the slipline construction,

the angle 𝛽2 can be variable and dictates the angular extent of the cir-

cular fan with center 𝑃 . Here, its value is set according to (2.21) [63.0∘

in (a) and 69.2∘ in (b)], where the lower and upper bounds match [see

figure 2-6]. At these values, the slipline pattern compares well with

the numerical solution, with the velocity jumps [along arc GD in (a,

left) and arcs BFH and CDG in (b, left)] replaced by viscoplastic shear

layers [bright yellow regions in (a, b; left)]. This provides numerical ev-

idence that the slipline pattern is the true plastic solution. The primed

points, 𝐵′ to 𝐹 ′, are the reflections of points, 𝐵 to 𝐹 , about the 𝑦-axis. 56
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2-6 Upper (blue) and lower (black) bounds derived from the Martin and

Randolph [8] slipline solution for the values of 𝜚 indicated; the circles

indicate the minimum of the upper bound, which coincides with the

intersection of the lower and upper bounds. For 𝛽2 less than this min-

imum, the lower bound exceeds the upper bound and is thus spurious

(shown dashed). For 𝛽2 > 1
2
𝜋, the velocity and stress fields become

inconsistent, as in the original Randolph and Houlsby [7] construction

(the corresponding bounds are shown by dotted lines). The red stars

show the extrapolated values for Bi → ∞ of the drag and angle 𝛽2 from

numerical computations. The excellent match between the numerical

computations (red stars) and the intersection of the lower and upper

bound curves indicates that the slipline solution at the corresponding

𝛽2 is the true plastic solution. [The angle 𝛽2 is estimated from the nu-

merical computations by matching the rotation rate of the rigid plugs

with the expression sin 𝛽2/𝜆. This avoids tracing the yield surfaces

which are sensitive to numerical errors.] . . . . . . . . . . . . . . . . 58

2-7 Squirmer solutions for (𝑛, 𝑎) = (1, 0) showing log10 �̇� overlain by stream-

lines (blue), with Bi = 1 (a–c) and Bi = 28 (d–f), for 𝑈𝑠Bi1/2 ≈ 0 (a, d),

0.1 (b, e), 0.38 (c, f), respectively. In (f), the full circle has the scale of

the axes as in (d) and (e), whereas the quarter circle shown in the inset

is a magnification to highlight the thin boundary layer. (g) Numeri-

cal drag coefficients 𝐶𝑑 against scaled translation speed Bi1/2𝑈𝑠 match

well with the asymptotic predictions for Bi ≫ 1 from the Randolph

and Houlsby slipline solution (§3) and the boundary-layer analysis of

§ 2.5.4 (dashed black lines). The 𝐶𝑑 = 0 line (dotted) corresponds to

the swimming speed of force-free squirmers. . . . . . . . . . . . . . . 64
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2-8 Squirmer solutions showing log10 �̇� at Bi = 28 for (a–c) 𝑛 = 3,𝑚 =

0 and (d–f) 𝑛 = 5,𝑚 = 0 with the imposed swimming speed (a,d)

𝑈𝑠 = −0.015, (b,e) 𝑈𝑠 = 0 and (c,f) 𝑈𝑠 = 0.015. (g) The variation
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(red squares). Since 𝑛 > 1 and 𝑚 = 0, 𝐶𝑑 = 0 [dashed line in (g)] is
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2-9 Force-free squirmer solutions showing showing log10 �̇� (same color bar

as in figure 2-8; streamlines, blue) for surface velocities with 𝑛 = 1,
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𝑎 = 2 and (f) 𝑎 = −2. (g–i) Variation of the swimming speed with

Bi. In (g), the asymptotic prediction (dashed) from (2.36) for 𝑎 = 0.25

matches well with the numerical data. . . . . . . . . . . . . . . . . . 66

2-11 Force-free squirmer solutions showing log10 �̇� for (𝑛,𝑚) = (2, 3) and

𝑎 = 1 for (a) Bi = 1 and (b) Bi = 28. (c) The variation of the non-zero

swimming speed 𝑈𝑠 with Bi. In contrast, these swimming modes have

a zero swimming speed in the Newtonian limit (Bi → 0). . . . . . . . 68

2-12 Force-free squirmer solutions showing log10 �̇� for the normal surface

velocity condition (2.11) with (a) 𝑎 = 0.1, (b) 0.25 and (c) 1, at Bi = 28.
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2-13 Boundary-layer thicknesses of squirmers for (a) (𝑛, 𝑎) = (1, 0), (b)

(𝑛,𝑚, 𝑎) = (1, 2, 0.25), and (c) (𝑛,𝑚, 𝑎) = (1, 3, 0.25), with Bi = 26

(black), Bi = 28 (blue), Bi = 210 (red) and Bi = 212 (green). The

boundary-layer theory predictions from (2.31)[dashed lines] match well

with the numerical profiles except near 𝜃 = 0, 𝜋. . . . . . . . . . . . 68

3-1 Statistically stationary states of the normalized vorticity 𝜁𝜏 from simu-

lations (a–i) for 𝜅Λ = 1 become more zonal (or banded) as the rotation

rate Ω𝜏 increases. At the highest rotation rate Ω𝜏 = 500, the width

of the alternating zonal jets is determined by the parameter 𝑅/Λ that

represents the ratio of the radius of the sphere and the diameter of

the vortices forced by the GNS dynamics. The main characteristics

of these flow patterns at high rotation rate are captured by spherical

harmonics 𝑌 0
ℓ (𝜃, 𝜑) that solve the dynamical equations. Matching the

length scale 𝑅/Λ gives ℓ = 6 (j), ℓ = 11 (k), and ℓ = 21 (l) for 𝑅/Λ = 2,
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3-2 The growth rate Ξ of spherical harmonic modes 𝑌 𝑚
ℓ (𝜃, 𝜑) in (3.5) plot-

ted as a function of the wavenumber ℓ. The parameters used to make

this plot are ((𝜏/𝑅2)Γ0, (𝜏/𝑅
4)Γ2, (𝜏/𝑅

6)Γ4) ≃ (1.43 × 10−2,−4.86 ×
10−5, 3.72 × 10−8) which correspond to 𝑅/Λ = 8 and 𝜅Λ = 1. The
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3-3 Data from steady-state solutions at 𝑡/𝜏 = 15 for the highest rotation

rate Ω𝜏 = 500. The rows correspond to 𝑅/Λ = 2 (a–d), 4 (e–h) and 8

(i–l). Panels (a, e, i) show Mercator projections of the dimensionless

vorticity 𝜁𝜏 . Panels (b, f, j) show the zonal-mean azimuthal velocities

⟨𝑣𝜑⟩𝜑/(𝑅/𝜏). Panels (c, g, k) show spherical harmonic decomposition of

dimensionless vorticity 𝜁𝜏 with marker size indicating amplitude and

color indicating phase. All plots indicate the existence of dominant

zonal jets with 𝑚 = 0 and ℓ’s within the active band indicated in grey.

These modes are close to the exact solutions in figure 3-1(j–l). Panels

(d, h, l) show time-variation of the energy of all the modes (black),

active 𝑚 = 0 modes (red), and all other modes (green); the energy

contained in the active 𝑚 = 0 accounts for most of the total energy in

the statistically stationary state. . . . . . . . . . . . . . . . . . . . . 84

3-4 Energy spectra for (a) 𝑅/Λ = 2, (b) 𝑅/Λ = 4 and (c) 𝑅/Λ = 8. The

grey shaded region indicates the active bandwidth where the spectra

show a peak. The spectra for (𝑅/Λ,Ω𝜏) = (4, 250), (4, 500) and (8, 500)

have been obtained from an ensemble average of 10 simulations with

random initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . 87

3-5 Phase speed of the spherical harmonic modes (ℓ,𝑚) in the forcing band-

width, normalized by the analytical phase speed in (3.11), for Ω𝜏 = 500

and different values of 𝑅/Λ. The dotted line indicates the value 1 for
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3-6 (a–d) Time-space diagrams of the deviation of vorticity, 𝜁−⟨𝜁⟩, where

⟨·⟩ is the average over time and space, indicate that the phase speed of

the westward propagating Rossby waves in the local 𝛽−plane changes

with latitude. (e–l) Logarithm of the power spectral density, 𝑆 =

|𝜏𝜁(𝑘𝑥, 𝜎)|2, where 𝜁 is the discrete Fourier transform, at different

northern (e–h) and southern (i–l) latitudes. The grey regions indi-

cate the forcing bandwidth with 𝑘− < |𝑘𝑥| < 𝑘+ justifying the rapid

decay of the power spectral density for |𝑘𝑥| > 𝑘+. The white lines

in each panel show the analytical dispersion relation from (3.14) with

|𝑘| = 𝑘+ and |𝑘| = 𝑘−; the one with the steeper slope corresponds to

𝑘−. These predictions capture the variance of power spectral density. 89
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4-1 Learning hydrodynamic models from particle simulations and experi-

ments. (a) Inputs are time-series data for particle positions x𝑖(𝑡), par-

ticle orientations p𝑖(𝑡) = (cos 𝜃𝑖, sin 𝜃𝑖)
⊤, etc., measured in simulations

or experiments with microscale resolution (§ 4.2.1). (b) Spatial kernel

coarse-graining of the discrete microscopic variables provides continu-

ous hydrodynamic fields, such as the density 𝜌(𝑡,x) or the polarization

density p(𝑡,x) (§ 4.2.2). (c) Coarse-grained fields are sampled on a

spatiotemporal grid and projected onto suitable spectral basis func-

tions. Systematic spectral filtering (compression) ensures smoothly

interpolated hydrodynamic fields, enabling efficient and accurate com-

putation of spatiotemporal derivatives (§ 4.2.3). (d) Using these deriva-

tives, a library of candidate terms 𝐶𝑙(𝜌,p) and 𝐶𝑙(𝜌,p) consistent with

prior knowledge about conservation laws and broken symmetries is con-

structed. A sparse regression algorithm determines subsets of relevant

phenomenological coefficients 𝑎𝑙 and 𝑏𝑙 (§ 4.2.4). The resulting hydro-

dynamic models are sparse and interpretable, and their predictions can

be directly validated against analytic coarse-graining results (§ 4.2.5) or

experiments (§ 4.3). Bottom: Snapshots illustrating the workflow for

microscopic data generated from simulations of chiral active Brownian

particles [equation (4.1)]. . . . . . . . . . . . . . . . . . . . . . . . . . 95
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4-2 Learning mass conservation dynamics. (a) Top: Time evolution of

positions and orientations of 12,000 particles following the dynamics

in equations (4.1). Bottom: Coarse-grained density 𝜌 (color code)

and polarization field p (arrows). Starting from random initial condi-

tions (𝑡 = 0), a long-lived vortex pattern with well-defined handedness

emerges (𝑡 = 1250). Training data were randomly sampled from the

time window 𝑡 ∈ [40, 400], contained within the gray box. Domain size:

100×100. (b) Slices through the power spectrum 𝑆𝑥;𝑛,q = |e𝑥 ·p̂𝑛,q|2 for

different values of the Chebyshev polynomial order 𝑛 ∈ {0, 300, 600},
corresponding to modes with increasing temporal frequencies. The

rightmost panel depicts the total spectral power
∑︀

q 𝑆𝑥;𝑛,q [see equa-

tion (4.3b)] of each Chebyshev mode 𝑛. The slowly decaying long tail

of fast modes indicates a regime in which fluctuations dominate over a

smooth signal. The cut-off 𝑛0 = 600 removes these modes, in line with

the goal to learn a hydrodynamic model for the slow long-wavelength

modes. (c) Kymographs of the spectral derivatives 𝜕𝑡𝜌 and −∇ · p
at 𝑦 = 50, obtained from the spectrally truncated data. (d) Mass

conservation in the microscopic system restricts the physics-informed

candidate library to terms that can be written as divergence of a vec-

tor field. (e) Learned phenomenological coefficients 𝑎𝑙 of PDEs with

increasing complexity (decreasing sparsity) (appendix C.3). PDE 1 (J)

is given by 𝜕𝑡𝜌 = 𝑎1∇ · p with 𝑎1 = −0.99. As PDE 1 is the sparsest

PDE that agrees well with analytic coarse-graining results (table 4.1),

it is selected for the hydrodynamic model. . . . . . . . . . . . . . . . 99
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4-3 Learning polarization dynamics. (a) Same particle dynamics as in fig-

ure 4-2a for visual reference. (b) Top: Coarse-grained density and

polarization field as in figure 4-2a. Bottom: Magnitude |p| of the

coarse-grained polarization field. Emerging vortices (𝑡 = 400, 1250)

appear as ring-like patterns in |p|. Training data were randomly sam-

pled from the time window 𝑡 ∈ [40, 400], enclosed within the gray box.

c: Physics-informed candidate library (with 𝑏1 = −𝐷𝑟) including terms

constructed from p⊥ = (−𝑝𝑦, 𝑝𝑥)⊤, which are allowed due to the chiral-

ity of the microscopic system. d: Learned phenomenological coefficients

𝑏𝑙 of PDEs with increasing complexity (appendix C.3). For all PDEs,

learned coefficients of the linear terms p⊥ and ∇𝜌 compare well with

analytic predictions (table 4.1, appendix C.2.2). e: Simulation of the

final hydrodynamic model (PDE 8 for the polarization dynamics and

PDE 1 in figure 4-2e for the density dynamics). Starting from random

initial conditions (𝑡 = 0), long-lived vortex states emerge on a similar

time scale, with similar spatial patterns, and with comparable density

and polarization amplitudes as in the coarse-grained microscopic model

data (b). Hydrodynamic models with PDEs sparser than PDE 8 do

not form stable vortex patterns. . . . . . . . . . . . . . . . . . . . . . 102

25



4-4 Learning from active polar particle experiments. (a) Snapshot of parti-

cle positions and velocity components of ∼ 2, 200 spontaneously mov-

ing Quincke rollers in a microfluidic channel [9]. Scale bar, 200 µm.

(b) Coarse-grained density field 𝜌(𝑡,x), expressed as the fraction of area

occupied by the rollers with diameter 𝐷𝑐 = 4.8 µm, and components

𝑣𝑥(𝑡,x) and 𝑣𝑦(𝑡,x) of the coarse-grained velocity field (𝜎 = 45 µm).

5×105 randomly sampled data points from ∼ 580 such snapshots over a

time duration of 1.4 s were used for the learning algorithm. (c) Physics-

informed candidate libraries for the density and velocity dynamics,

{𝐶𝑙(𝜌,v)} and {𝐶𝑙(𝜌,v)}, respectively [equation (4.5)]. These are the

same libraries as shown in Figs. 4-2e and 4-3d, but without the chiral

terms and replacing p → v. (d) Learned phenomenological coefficients

𝑐𝑙 and 𝑑𝑙 of the four sparsest PDEs for the density (left) and velocity

(right) dynamics. The coefficients are non-dimensionalized with length

scale 𝜎 and time scale 𝜎/𝑣0, where 𝑣0 = 1.2mm s−1 is the average roller

speed. PDE 1 for density dynamics corresponds to 𝜕𝑡𝜌 = 𝑐3∇ · (𝜌v)

with 𝑐3 ≃ −0.95. PDE 2 for the velocity dynamics is shown in equa-

tion (4.6b). Learned coefficients compare well with the values reported

in Ref. [9] (table 4.2). (e) Simulation snapshot at 𝑡 = 1.8 s of the learned

hydrodynamic model (PDEs marked by J in (a)) in a doubly periodic

domain. Spontaneous flow emerges from random initial conditions,

and exhibits density and velocity fluctuations that show similar spatial

patterns and amplitudes as seen in the experiments (a). (f) Simulation

snapshots at 𝑡 = 18.5 s of the same hydrodynamic model as in (e) on

a square domain with reflective boundary conditions. The model pre-

dicts the emergence of a vortex-like flow permeated by density shock

waves. This prediction agrees qualitatively with experimental observa-

tions (rightmost panel) of Quincke rollers in a 5mm×5mm confinement

with average density 𝜌0 ≈ 0.1 (Image credits: Alexandre Morin, Del-

phine Geyer, and Denis Bartolo). Scale bars, 200 µm (simulation) and

1 mm (experiment). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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4-5 The learned model accurately predicts collective Quincke roller speeds

𝑣0 at different average area fractions 𝜌0. Although equation (4.6) was

learned from a single experiment (Supplementary Movie S2 in Ref. [9])

at fixed average area fraction 𝜌0 = 0.11 (filled black circle), the model

prediction 𝑣0(𝜌0) =
√︀

−(𝑑1 + 𝑑2𝜌0)/𝑑3 (solid line) with inferred pa-

rameters 𝑑1, 𝑑2, 𝑑3 (table C.4), agrees well the experimentally mea-

sured speed values (red symbols) reported in Supplementary figure 4

of Ref. [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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Chapter 1

Introduction

1.1 Active matter

Active matter systems are composed of self-driven units that convert stored or ambi-

ent free energy into motion, often within a surrounding fluid medium [10, 11, 12]. In

nature, such systems can be found at a variety of physical length and time scales, from

tens of meters in flocks of birds [13] and schools of fish [14], to micro-meters in dense

suspensions of sperm cells [4] or bacteria [3]. In addition to living matter, active fluids

have also been engineered, for example, by exploiting electro-hydrodynamic instabili-

ties of colloidal particles submerged in a dielectric fluid [5] or by imposing an external

rotating magnetic field on a collection of colloidal magnets [6]. Inspired by natural

swarms, researchers have also created them artificially by assembling thousands of

autonomous robots that cooperate only through local interactions [15].

At high particle concentrations in both living and non-living active matter, co-

herent large-scale collective motion has been observed as a result of interactions be-

tween the particles, mediated by the surrounding medium (figure 1-1). The most

vivid examples are collections of birds or fish that exhibit ordered motion, or ‘flock-

ing’ [16]. A dense bacterial suspension leads to chaotic flows with characteristic length

and time scales, popularly referred to as ‘active turbulence’ [17, 18, 19] (figure 1-1a).

Sperm cells get hydrodynamically entrained in a suspension to form a 2D array of

vortices [4] (figure 1-1b). Active colloidal particles have also been observed to spon-
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(a) (c)

(d)(b)

Figure 1-1: Biological and engineered active matter. (a) A dense bacterial suspension
in a microfluidic chamber exhibits collective chaotic motion with a prominent length
scale (reproduced from Wensink et al. [3]). (b) Two-dimensional array of vortices
visible in time-averaged snapshots of swimming sperm cells (from sea urchins) due
to hydrodynamic entrainment (from Riedel et al. [4]; reproduced with permission
from AAAS). (c) Colloidal particles submerged in a dielectric fluid undergo electro-
hydrodynamic instabilities and start to roll over a surface, thus mimicking active
particles [5]. Over a million micro-rollers are confined within a 5 mm x 5 mm square
domain, resulting in spontaneous symmetry breaking and the formation of four inter-
woven density shocks due to the reflections from the boundaries (Credits: Alexandre
Morin, Delphine Geyer, and Denis Bartolo). (d) Colloidal micro-magnets suspended
in water rotate about their axes due to an external rotating magnetic field. They hy-
drodynamically interact with each other to form macro-droplets containing hundreds
of micro-magnets (from Soni et al. [6]; reproduced with permission from Springer
Nature). Scale bars: (a) 10 𝜇m, (b) 200 𝜇m, (c) 1 mm, and (d) 100 𝜇m.
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taneously break symmetry under confinement (figure 1-1c) or form chiral macro-

droplets (figure 1-1d). Such suspensions of living and non-living active particles are

also referred to as ‘active fluids’ [20]. A key question for these fluids is how one

can construct continuum models that capture their phenomenology and elucidate the

physical principles that arise from particle interactions [10]. It is also a major chal-

lenge to quantify [21] and measure the bulk hydrodynamic parameters [22] and relate

them to microscopic properties [9].

1.2 Models for swimming micro-organisms

To understand collective behavior, it is important to characterize the microscopic

flows that are generated by individual swimming organisms or engineered active par-

ticles. These flows affect other particles in their neighborhood and hence influence

the collective behavior. Micro-organisms swim in the world of low-Reynolds number,

where viscous effects dominate the fluid or particle inertia [23]. They typically propel

themselves through tiny protrusions known as flagella or cilia, albeit through a variety

of different physical motions. For example, sperm cells have a single flagella to which

they induce a wave-like deformation to swim [24]. Chlamydomonas algae have two

flagella that beat together much like the human breast stroke [25].

From an applied mathematician’s perspective, swimmers can be minimally rep-

resented by force dipoles (or stresslets), since their net force must be zero in the

absence of inertia [23]. Based on the nature of the force dipoles, they can be broadly

categorized into ‘pushers’ and ‘pullers’. Pushers have a dipole of forces pointing away

from the body so that they repel fluid along the body axis and draw it in from the

sides; examples include spermatozoa and E. coli. Pullers have dipole forces pointing

inwards, thus pushing fluid away from the sides; a prominent example is Chlamy-

domonas. Another prominent swimming mechanism is exhibited by a multi-cellular

spherical colony of Volvox carteri via hundreds of cilia beating synchronously to form

metachronal waves [26]. To model such spherical swimming colonies and other or-

ganisms, the so-called idealized ‘squirmer’ models consider cylinders or spheres with
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an imposed steady surface velocity [27, 28, 29]. This mimics the coordinated beating

of cilia and the specific form of the imposed velocity can be varied to model both

pushers and pullers.

Apart from the kinematics of the swimming mode, the rheology of the surround-

ing medium also plays a key role in the swimming characteristics and the resulting

flows [23]. Micro-organisms often swim in fluids with a variety of non-Newtonian

properties. Sperm cells must swim through mucus which is known to have visco-

elasto-plastic characteristics [30]. Marine invertebrates such as Kinorhyncha, also

known as ‘mud dragons’, have evolved to navigate muddy sediments [31] which are

viscoplastic.

While most squirmer models have been considered in Newtonian fluids, there

has also been focus on the effects of viscoelasticity [32, 33]. In contrast, relatively

less attention has been given to how the presence of a yield stress can affect the

swimming behavior. To address this gap in the literature and motivated by recent

related viscoplastic locomotion problems [34, 35], in Chapter 2 we investigate the

motion of pusher and puller squirmers and translating cylinders in viscoplastic fluids.

1.3 Hydrodynamic models for active matter

To obtain a continuum hydrodynamic description of active systems, a popular ap-

proach is to start with their microscopic description and subsequently use tools from

statistical physics to coarse-grain the microscopic dynamics [36, 37, 11]. If it is pos-

sible to postulate the microscopic physics, several follow-up assumptions typically

need to be made to arrive at the continuum description for the long-wavelength,

slow-timescale hydrodynamics [38, 39]. An alternative approach is to simply write

down continuum equations that govern the macroscopic fields by including all possi-

ble terms that respect physical symmetries in the system. Typically, a large number

of such terms are possible due to the absence of generic conservation laws, with the

exception of particle number conservation in some systems. This approach was pio-

neered by Toner and Tu [40], who proposed a continuum extension of the agent-based
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model by Vicsek et al. [41]. The Toner-Tu model provided a means to explain flock-

ing of active particles as well as fluctuations around such ordered states. Such a

phenomenological approach has also been successful in constructing models for ac-

tive turbulence [17, 19]. One class of these non-equilibrium models is the generalized

Navier-Stokes (GNS) equations which couple nonlinear advection with a generic linear

instability [42]. Due to the success of GNS in modeling pattern formation in active

suspensions [18, 43], it is a natural question whether such models with active energy

injection can be utilized in other pattern forming systems. Motivated further by re-

cent studies which show that non-equilibrium approaches can provide insights into

the dynamics of planetary flows and atmospheres [44, 45], in Chapter 3 we investigate

a rotating two-dimensional GNS model on a sphere.

1.4 Learning continuum models from data

Due to advances in microscopy techniques [46, 47] and agent-based computational

modeling [48], active matter systems can now be observed and analyzed at remarkable

spatiotemporal resolutions. In parallel with this progress, machine learning methods

have shown potential in applications to active matter [49] as well as fluid mechan-

ics [50]. There have been largely two streams of methodologies to incorporate machine

learning into the mathematical modeling of physical systems. The first approach is

to approximate the dynamical equations or the system’s state partially or entirely by

black-box neural networks [51, 52, 53, 54]. This methodology has also been employed

for solving inverse problems using Physics-Informed Neural Networks (PINNs) [55]

which incorporate the underlying governing equations – if known a priori – as con-

straints. The second approach is to discover the governing ordinary or partial dif-

ferential equations [56, 57], which is particularly useful when the system’s governing

equations are not known. This methodology is highly interpretable since specific

terms in the discovered equations can be connected back to the underlying physics.

Learning differential equations from data goes back more than two decades when

Bär et al. [58] demonstrated the recovery of reaction-diffusion equations from simu-
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lated data. Subsequently, using symbolic regression, Schmidt and Lipson [59] showed

how analytic expressions for conserved quantities such as the Hamiltonian of a dou-

ble pendulum system can be learned from experimental data. More recently, Brunton

et al. [56] proposed the Sparse Identification of Nonlinear Dynamics (SINDy) frame-

work that performs sparse regression on a pre-defined candidate library of terms to

recover the underlying differential equations. To enhance its noise robustness, this

framework has been further combined with artificial neural networks [60, 61], weak

formulations [62, 63], and stability selection [64, 65]. These seminal studies, however,

have primarily focused on the recovery of equations from continuum simulation data

and it remains to be seen how successful they can be for systems where the governing

equations are not known a priori. Due to the inherent complexities of first principle

derivations in active matter systems, such equation discovery methods could provide

an accelerated and informative pathway for modeling them [49]. In line with this

motivation, we present a learning framework in Chapter 4 that successfully translates

both microscopic simulation and experimental data into interpretable and predictive

hydrodynamic models.

1.5 Thesis contributions

This thesis contributes to answering the following fundamental questions:

1. How do individual micro-organisms swim in complex fluids? By studying ide-

alized squirmer models in viscoplastic fluids, what is the impact of yield stress

on swimming speed and the corresponding flow fields?

2. To what extent can recently proposed phenomenological models for active fluids

be used to describe other pattern-forming systems? Specifically, what insights

can be drawn from the generalized Navier-Stokes equations when they are cou-

pled with a curved geometry in a rotating frame?

3. How can we make use of recent machine learning methods to learn phenomeno-

logical continuum models for active matter directly from experimental video
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data? In particular, how can equation discovery methods be integrated with

physical constraints and our knowledge of (broken) symmetries to learn active

hydrodynamic models that are not known a priori?

1.6 Outline

Chapter 2

To study the effect of a yield stress on the swimming characteristics of micro-organisms,

we consider the Bingham model for viscoplastic creeping flow around squirming cylin-

ders. We begin by first addressing two related problems for non-squirming cylinders.

First, translating cylinders with no-slip surfaces appear to generate adjacent rotating

plugs in the limit where the translation speed becomes vanishingly small. In this

plastic limit, analytical results are available from slipline theory of perfect plasticity

which indicate that no such plugs should exist. Using a combination of numerical

computations and asymptotic analysis, we show that the plugs of the viscoplastic

theory actually disappear in the plastic limit, albeit very slowly (§ 2.3). Second,

when the boundary condition on the cylinder is replaced by one that permits sliding,

the plastic limit corresponds to a partially rough cylinder. In this case, a plasticity

solution has not been previously established; we provide evidence from numerical

computations and slipline theory that a previously proposed upper bound by Martin

and Randolph [8] is actually the true plastic solution (§ 2.4). Finally, we consider

how a prescribed surface velocity field can propel cylindrical squirmers through a

viscoplastic fluid (§ 2.5). We determine swimming speeds, contrast the results with

those from the corresponding Newtonian problem, and discuss implications of flow

localization on collective dynamics and the energetics of different swimming modes.

Chapter 3

We study a continuum phenomenological model for active fluids to investigate its

general utility in pattern forming systems. In particular, we investigate higher-

order extensions of the Navier-Stokes equations which couple nonlinear advection
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with active energy injection through a generic linear instability. These generalized

Navier-Stokes (GNS) [18] equations present a minimal model for fluid flows driven

by active stresses, are analytically tractable, and have been recently shown to per-

mit exact solutions on a stationary 2D sphere [66]. In this chapter, motivated by

planetary atmospheres, we extend the analysis to linearly driven flows on rotating

spheres (§ 3.2). Exact solutions with time-independent zonal jets superimposed with

westward-propagating Rossby waves are derived on the sphere as well as on the local

𝛽−plane (§ 3.3). These solutions are qualitatively similar to those seen in planetary

atmospheres. Using a spectral numerical solver, we also perform direct numerical

simulations (§ 3.4); at large rotation rates, the resulting statistically stationary states

are close to the exact solutions of the model. The measured phase speeds of waves in

the numerical solutions agree with our analytical predictions for Rossby waves. Our

results show that the GNS framework can be a useful minimal model for describing

pattern forming flows on rotating spheres, such as planetary atmospheres.

Chapter 4

We present a learning framework that addresses the challenge of learning macroscopic

hydrodynamic equations for active matter directly from particle data. Our frame-

work leverages spectral basis representations and sparse regression algorithms [56]

to discover PDE models from microscopic simulation and experimental data, while

incorporating the relevant physical symmetries. The practical potential of this ap-

proach is first demonstrated for a chiral active particle model mimicking swimming

cells (§ 4.2.1). The learned equations quantitatively reproduce the self-organized

vortices observed in the microscopic simulations. Furthermore, the key linear co-

efficients of the model compare well with those obtained from coarse-graining pro-

cedures (§ 4.2.5). We then apply the framework to experimental data from recent

colloidal micro-roller experiments by Geyer et al. [9] (§ 4.3). Here, the learned mod-

els reproduce the phenomenology of sound waves in the experimental data and the

coefficients compare well with estimates from the experimental study. The learned

equations are further analyzed to obtain the density-dependent speed of the rollers,
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which matches very well with measurements from different experiments (§ 4.3.3). To

further test the predictability of the learned model, we simulate it in a different ge-

ometry and find that the resulting phenomena is remarkably similar to analogous

experiments (§ 4.3.4). These results show that our inference framework can be used

to learn interpretable and predictive hydrodynamic models by incorporating the rel-

evant physical constraints and domain knowledge of active systems. The framework

also makes it possible to measure a large number of hydrodynamic parameters in

parallel and directly from video data.

Chapter 5

We present the conclusions of this work (§ 5.1) and discuss avenues for future re-

search (§ 5.2).
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Chapter 2

Translating and squirming cylinders

in a viscoplastic fluid

The contents of this chapter have been published in the article: R. Supekar, D. R.

Hewitt, and N. J. Balmforth, Translating and squirming cylinders in a viscoplastic

fluid, J. Fluid Mech., 882:A11, 2020 [67]. This research was initiated when the au-

thor of the thesis participated in the Geophysical Fluid Dynamics summer fellowship

program [1] in 2018.

2.1 Introduction

Slow viscous flow around a cylinder is a classical problem in fluid mechanics, associ-

ated with Stokes’ paradox and its resolution by the inclusion of weak inertial terms in

the far field. The analogous problem for non-Newtonian fluids has also played a role

in understanding viscoelastic extensional flow [68, 69] and how a yield stress localizes

deformation and provides drag for viscoplastic fluids [70, 71] and granular materi-

als [72, 73]. The latter developments connect with soil mechanics and the problem

of the critical load required to shift a circular pile through a plastic medium [7, 8].

The purpose of the current chapter is to explore further the viscoplastic version of

the problem and analyze flows of yield-stress fluids around cylinders. Our eventual

goal is to understand how the yield stress impacts the swimming behavior of micro-
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organisms (§1.2). To gain preliminary insight, we begin by considering two related

problems.

The first is a short reconsideration of the relatively classical problem of the motion

of a cylinder with a no-slip surface through a viscoplastic medium. This problem has

been approached previously using variational methods [71], numerical computation

[74, 75, 76, 77], and laboratory experiments [78], and has applications to the sedi-

mentation of particles through a viscoplastic medium [79]. In the limit of vanishing

flow speeds, one expects that this viscoplastic problem reduces to that for the critical

load on a circular pile in an ideal cohesive plastic medium. For that critical load

problem, Randolph and Houlsby [7] provided an analytical solution using the method

of sliplines (the characteristics of the stress field), the no-slip condition corresponding

to a fully rough surface. The critical loads found for viscoplastic computations in

the limit of no motion do indeed appear to agree with predictions by Randolph and

Houlsby [7]. However, the computed velocity field is not consistent with the slipline

solution, containing some unexpected rotating plugs [75, 77]. This is a concern be-

cause the viscoplastic problem is only expected to reduce to one of perfect plasticity

outside any boundary layers wherein viscous effects remain important. The residual

plugs are attached to such boundary layers at the surface of the cylinder, perhaps

reflecting a pervasive viscous effect. We dissect this issue in order to show that the

residual plugs disappear in the plastic limit, and thereby demonstrate that there is

no conflict with perfect plasticity.

The second problem we address concerns the motion of cylinders whose surface

permits some degree of slip. This situation has also been considered in plasticity

theory, with Randolph and Houlsby [7] searching for the critical load on cylinders

with partially rough surfaces. Importantly, the ability of the material to slide over

the cylinder demands modifications to the slipline field. Unfortunately, the construc-

tion provided by Randolph and Houlsby leads to stress and velocity fields that are

inconsistent with one another, implying that their slipline field cannot correspond

to the true plastic solution [80, 8]. To shed more light on this issue, we consider

viscoplastic flow around cylinders with boundary conditions that allow slip, with a

42



view to approaching the perfectly plastic limit. In so doing, we provide evidence for

what is the true plastic solution for these partially rough cylinders. The situation

also corresponds to a flow problem wherein sliding is possible or if a thin weakened

layer exists sheathing the cylinder, exactly as commonly assumed to explain effective

slip [81] and already studied in the context of viscoplastic flow around cylinders [76].

Finally, we consider the locomotion of cylindrical ‘squirmers’ in a viscoplastic fluid.

Squirmers are a popular idealization of swimming micro-organisms that have fixed

shape but propel themselves using a prescribed surface velocity field that represents

the action of ciliary motion [82, 83, 84, 29]. Although most such models are based

on spheres, cylindrical squirmers have been considered in Newtonian fluids, to study

their interaction with walls or other swimmers [32, 85], or viscoelastic and power-law

fluids, to determine their performance in an idealized physiological ambient [86, 33].

The idealized geometry in these cases allows for a first discussion of the complicating

additional physics. Our goal here is to explore how these simplified model swimmers

perform in a viscoplastic fluid, following on from related locomotion problems in which

a yield stress was demonstrated to dramatically alter the swimming dynamics [34, 35].

Thus, we explore the impact of a yield stress on squirming locomotion, exploiting the

results for translating cylinders to understand the exposed flow patterns. Our findings

address the broader goal of this thesis to understand collective dynamics of swimmers

as discussed in § 2.6.

2.2 Mathematical formulation

Neglecting inertia and gravity, we consider a cylinder of radius ℛ moving through

an incompressible Bingham fluid (e.g. Balmforth et al. [79]) with a characteristic

speed 𝒰 . To obtain a dimensionless set of equations, we use ℛ and 𝒰 to remove the

dimensions of length and velocity, respectively. Pressure and stresses are scaled by

the characteristic viscous stress 𝜇𝒰/ℛ where 𝜇 is the (plastic) viscosity of the fluid.

In the polar coordinate system (𝑟, 𝜃) with the origin at the center of the cylinder, the

governing equations for the dimensionless fluid velocity (𝑢(𝑟, 𝜃), 𝑣(𝑟, 𝜃)) and pressure
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𝑝(𝑟, 𝜃) are given by

1

𝑟
𝜕𝑟 (𝑟𝑢) +

1

𝑟
𝜕𝜃𝑣 = 0, (2.1a)

𝜕𝑟𝑝 =
1

𝑟
𝜕𝑟(𝑟𝜏𝑟𝑟) +

1

𝑟
𝜕𝜃𝜏𝑟𝜃 −

𝜏𝜃𝜃
𝑟
, (2.1b)

1

𝑟
𝜕𝜃𝑝 =

1

𝑟2
𝜕𝑟(𝑟

2𝜏𝑟𝜃) +
1

𝑟
𝜕𝜃𝜏𝜃𝜃, (2.1c)

where 𝜏𝑖𝑗 is the deviatoric stress tensor. We use the Bingham constitutive law,

𝜏𝑖𝑗 =

(︂
1 +

Bi

�̇�

)︂
�̇�𝑖𝑗 for 𝜏 > Bi,

�̇�𝑖𝑗 = 0 for 𝜏 ≤ Bi, (2.2)

where

{�̇�𝑖𝑗} =

⎡⎣ 2𝜕𝑟𝑢 𝜕𝑟𝑣 + (𝜕𝜃𝑢− 𝑣)/𝑟

𝜕𝑟𝑣 + (𝜕𝜃𝑢− 𝑣)/𝑟 2(𝜕𝜃𝑣 + 𝑢)/𝑟

⎤⎦ , (2.3)

�̇� =
√︁

1
2

∑︀
𝑗,𝑘 �̇�

2
𝑗𝑘 and 𝜏 =

√︁
1
2

∑︀
𝑗,𝑘 𝜏

2
𝑗𝑘 denote the second tensor invariants. The

dimensionless yield stress, or Bingham number, is

Bi =
𝜏𝑌ℛ
𝜇𝒰 . (2.4)

The drag force on the cylinder in the 𝑥−direction plays an important role, and is

defined by

𝐹𝑥 =

∮︁
d𝜃[(𝜏𝑟𝑟 − 𝑝) cos 𝜃 − 𝜏𝑟𝜃 sin 𝜃]𝑟=1 ≡

∮︁
d𝜃[2𝜏𝑟𝑟 cos 𝜃 + 𝜕𝑟(𝑟𝜏𝑟𝜃) sin 𝜃]𝑟=1. (2.5)

The plastic drag coefficient 𝐶𝑑 is related to this force by 𝐶𝑑 = −𝐹𝑥/(2Bi). Although

this coefficient is strictly only relevant in the plastic limit Bi ≫ 1, the implied rescaling

of 𝐹𝑥 is convenient for a wider range of Bi, leading us to use it as a measure of the

drag for more general parameter settings.

44



2.2.1 Boundary conditions

Translating cylinder with a rough or no-slip surface

For a no-slip cylinder moving in the 𝑥−direction with unit speed (i.e. dimensional

speed 𝒰), we impose

(𝑢, 𝑣) = (cos 𝜃,− sin 𝜃) at 𝑟 = 1. (2.6)

Both velocity conditions cannot be applied in ideal plasticity. Instead, a prescribed

normal velocity forces plastic deformation with tangential slip along the boundary

of the cylinder. At finite, but large Bingham number, one expects any such slip to

become smoothed over viscous boundary layers wherein the shear stress dominates

the other stress components. If this turns out to be the case, no slip is equivalent to

the local stress condition |𝜏𝑟𝜃| ∼ Bi, which is the fully rough surface condition used

in plasticity theory.

Translation with slip

If the surface of the cylinder is partially rough, with a roughness factor 𝜚 ∈ [0, 1], the

boundary condition to be imposed is [7, 8]

𝑢 = cos 𝜃 and 𝜏𝑟𝜃 = 𝜚Bi sgn(𝑦) at 𝑟 = 1. (2.7a, b)

Setting 𝜚 = 1 corresponds to a fully rough cylinder, and 𝜚 = 0 to a perfectly smooth,

or free slip, cylinder. Although it is not necessarily a natural boundary condition for

a fluid, the second condition in (2.7) is equivalent to the rate-independent limit of the

Mooney-type slip-law

𝑣(𝑟 = 1, 𝜃) + sin 𝜃 = 𝐴(|𝜏𝑟𝜃| − 𝜏𝑤)𝑞 sgn(𝜏𝑟𝜃), (2.8)

for some parameters 𝐴, 𝑞 and wall stress threshold 𝜏𝑤 = 𝜚Bi. Such slip laws are

common when modelling effective slip due to surface interactions in many suspen-
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sions (e.g. Barnes [81]; see also Ozogul et al. [76]).

Squirming surface motions

For a model squirmer, we again impose the surface velocity, this time in the frame

of the cylinder, and select 𝒰 as its characteristic scale. The speed of the cylinder

with respect to the ambient fluid then becomes 𝑈𝑠. We consider purely tangential

squirming motions and set

(𝑢, 𝑣) = (𝑈𝑠 cos 𝜃, 𝑉𝑝(𝜃) − 𝑈𝑠 sin 𝜃) at 𝑟 = 1, (2.9)

where (0, 𝑉𝑝) represents the prescribed surface velocity. For specific examples, we

adopt previously employed models of treadmilling cillia given by

𝑉𝑝(𝜃) = sin𝑛𝜃 + 𝑎 sin𝑚𝜃, (2.10)

with integers 𝑛 and 𝑚 ̸= 1, Notable conventional models include the simplest case,

with (𝑛, 𝑎) = (1, 0), or employ (𝑛,𝑚) = (1, 2) with 𝑎 < 0 giving a ‘pusher’ and

𝑎 > 0 a ‘puller’ (based on the distribution of 𝑉𝑝(𝜃)). Note that, although one can

generate solutions for any 𝑈𝑠, the swimming speed of a free locomotor is set by the

requirement that the net force on the cylinder in the 𝑥−direction should vanish; i.e.

𝐹𝑥 = 0 in (2.5).

Finally, we also consider a limited number of examples in which we replace (2.9)

with a squirming motion normal to the cylinder surface,

(𝑢, 𝑣)|𝑟=1 = (𝑈𝑠 cos 𝜃−𝑈𝑝(𝜃),−𝑈𝑠 sin 𝜃), with 𝑈𝑝 = cos𝑛𝜃+𝑎 cos𝑚𝜃. (2.11)

Although Blake also considered normal surface velocities, he took these as components

of propagating wave-like motions, unlike the steady model in (2.11), which is closer

to the propulsion mechanism discussed by Spagnolie and Lauga [87].
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2.2.2 Numerical method

We solve the governing equations using the augmented Lagrangian scheme summa-

rized by Hewitt and Balmforth [34]. In brief, after the elimination of the pressure

from the momentum equations (2.1b)-(2.1c) and the introduction of a stream function

𝜓(𝑟, 𝜃) such that

(𝑢, 𝑣) =

(︂
1

𝑟
𝜕𝜃𝜓,−𝜕𝑟𝜓

)︂
, (2.12)

we must solve the biharmonic-like problem

∇4𝜓 = Bi

[︂(︂
1

𝑟
𝜕𝑟𝑟𝜕𝑟 +

2

𝑟
𝜕𝑟 −

1

𝑟2
𝜕2𝜃

)︂
�̇�𝑟𝜃
�̇�

− 2

𝑟

(︂
𝜕𝑟 +

1

𝑟

)︂
𝜕𝜃

(︂
�̇�𝑟𝑟
�̇�

)︂]︂
, (2.13)

over the yielded regions �̇� > 0. This is achieved by means of an iterative scheme in

which one solves, at each step, a linear biharmonic equation over the whole domain

(both yielded and plugged) and a nonlinear algebraic problem that incorporates the

constitutive law.

We work on the domain 0 6 𝜃 6 𝜋, with symmetry conditions at 𝜃 = 0, 𝜋. The

stress invariant decays away from the cylinder, and must eventually fall below the

yield stress. We therefore choose a sufficiently large computational domain to contain

all the yielded fluid, and set (𝑢, 𝑣) = (0, 0) at the edge. If both velocity components

are also specified on the surface of the cylinder, the boundary conditions there can

be implemented directly in terms of the stream function and its derivatives. The

boundary condition in (2.7b), however, imposes the shear stress, which is problematic

as the iterative solution of (2.13) requires conditions involving the streamfunction. To

surmout this difficulty, we replace (2.7b) by the condition �̇�𝑟𝜃 = 𝜚�̇� sgn(𝑦) at 𝑟 = 1,

which reduces to (2.7b) where the fluid surface is yielded. If, however, the boundary

is plugged, the two conditions are not equivalent. To avoid this inconsistency, in

the corresponding computations we used a common regularized constitutive model

𝜏𝑖𝑗 = �̇�𝑖𝑗[1+�̇�−1Bi(1−𝑒−𝑚�̇�)], which reproduces the Bingham law in (2.2) for �̇� ≫ 𝑚−1,

with 𝑚 = 104 (this choice of 𝑚 was sufficiently high that the solutions match those for

the unregularized law over the yielded regions, and are insensitive to the precise value
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of 𝑚). Now the fluid is forced to yield everywhere, the boundary is never plugged,

and the alternative boundary condition is always equivalent to (2.7b).

The linear biharmonic equation is solved by exploiting a Fourier sine series in 𝜃,

and second-order finite differences in the radial direction. The numerical resolution

was chosen to be sufficient to resolve the smallest scales of the problem: the radial

grid size was at most 0.003, and at least 512 Fourier modes in 𝜃 were used. In some

of our computations at the highest Bingham numbers, we used a stretched grid in

the radial direction to enhance the resolution in boundary layers near the cylinder’s

surface.

2.2.3 Ideal plasticity

In the limit Bi → ∞, one expects that the viscous stresses become insignificant in com-

parison to the yield stress outside any boundary layers, implying that yielded material

deforms at the yield stress, with 𝜏𝑖𝑗 = Bi�̇�𝑖𝑗/�̇�. In Cartesian coordinates (𝑥, 𝑦), the

stress components can then be written in terms of a local slip angle 𝜗 as (𝜏𝑥𝑥, 𝜏𝑥𝑦) =

Bi(− sin 2𝜗, cos 2𝜗). Upon substituting the stress components into the momentum

equations (∇ · 𝜏 = ∇𝑝), the equations are hyperbolic in 𝑝 and 𝜗 with the character-

istics of the stress field following the sliplines [88],

𝛼-lines:
𝑑𝑦

𝑑𝑥
= tan𝜗, 𝑝+ 2Bi𝜗 = constant, (2.14)

𝛽-lines:
𝑑𝑦

𝑑𝑥
= − cot𝜗, 𝑝− 2Bi𝜗 = constant. (2.15)

The angle 𝜗 is the anti-clockwise angle of the 𝛼-line as measured from the 𝑥−axis.

The sliplines are a set of mutually orthogonal lines along which the shear stress is

the maximum and the normal stresses are zero. In other words, if R(𝜗) denotes the

rotation matrix, then,

R(𝜗) 𝜏 R(𝜗)⊤ =

⎡⎣ 0 ±Bi

±Bi 0

⎤⎦ . (2.16)
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The components of the velocity field along the sliplines (𝑢𝛼, 𝑢𝛽) satisfy

𝜕𝑢𝛼
𝜕𝑠𝛼

=
𝜕𝑢𝛽
𝜕𝑠𝛽

= 0, (2.17)

where 𝑠𝛼 and 𝑠𝛽 are the arclengths along the respective sliplines. That is, the com-

ponent of the velocity directed along a particular slipline must be constant.

The plasticity problem can also be formulated in variational terms to establish the

following two useful results [88]: first, if the velocity field is not simultaneously calcu-

lated, slipline fields that satisfy (2.14) and (2.15), together with any stress boundary

conditions, constrain the true solution by providing strict lower bounds on the drag

force on the cylinder. Second, trial velocity fields that satisfy the surface velocity and

incompressibility conditions, but not the stress relations, place upper bounds on the

drag force (given that the associated dissipation rate must balance the power input

required to overcome the drag). Such upper bounds can be improved by posing trial

velocity fields guided by the slipline fields. Indeed, if the lower and upper bounds

then match, the stress and the velocity fields must correspond to those of the actual

solution. Note that, in the slipline stress analysis, one must further demonstrate that

there is an admissible stress distribution inside any rigid plugs that satisfies both the

force balance equations and yield criterion (𝜏 < Bi).

Randolph and Houlsby [7] exploited these bounding principles for a fully rough

cylinder driven through a perfectly plastic medium. In particular, they constructed a

slipline solution and a matching velocity field for which the upper and lower bounds

agreed. They further showed that an admissible stress distribution could be found for

all the unyielded regions. Hence, their construction provides the true plastic solution.

For partially rough cylinders, however, their trial velocity field was not consistent

with the slipline solution over part of the yielded region, and the correct computation

of the upper bound leaves a mismatch with the lower bound [80]. This led Martin and

Randolph [8] to suggest an alternative trial velocity field, associated with a different

slipline solution, that lay closer to, but not coincident with the lower bound. The true

solution for partially rough cylinders has therefore not been previously identified.
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2.3 Revisiting flow around a no-slip cylinder

In this section, we analyze the viscoplastic flow around a no-slip or fully rough cylin-

der, focussing on high Bingham number. Figure 2-1 shows a numerical solution for

Bi = 214. Plotted is the strain rate, with the regions shaded black corresponding to

the plugs, together with the Randolph and Houlsby [7] slipline solution. Three types

of plugs appear in the numerical solution, as found previously [74, 75, 77]: first, the

ambient medium plugs up sufficiently far from the cylinder to localize the flow. Sec-

ond, triangular plugs are attached to the front and back of the cylinder. Finally, two

plugs with almost semi-circular shape rotate rigidly near the top and bottom of the

cylinder. Only the first two types of plugs feature in the perfectly plastic solution; the

rigidly rotating plugs lie in the region of perfectly plastic deformation in the slipline

solution where there is always shear.

2.3.1 Randolph and Houlsby’s slipline solution

In detail and for the upper half of the solution, the slipline pattern (figure 2-1b)

consists of a semi-circular centered fan at the top of the cylinder with center 𝐴 at

(0, 1) and radius 1 + 𝜋/4. The 𝛽-lines form the spokes and 𝛼-lines form the circular

arcs. The 𝛼−lines are continued below the line 𝐴𝐷 by the involutes of the cylinder,

and the 𝛽−lines become tangents. The construction of the involutes ensures that the

stress field statisfies the fully-rough boundary condition, 𝜏𝑟𝜃 = Bi, on the cylinder

surface. The limiting 𝛽-lines 𝐵𝐶 and 𝐵′𝐶 ′ intersect the 𝑥−axis at 45∘, as demanded

by symmetry, which isolates the triangular plugs capping the front and back of the

cylinder. The 𝛼−line 𝐶𝐷𝐺𝐷′𝐶 ′ determines the outermost yield surface.

The velocity field associated with the slipline pattern is directed purely along the

𝛼−lines (and so, in this case, the streamlines are 𝛼−lines): the involutes beginning

along 𝐵𝐶 have 𝑣𝛼 = 1/
√

2, whereas those that begin at the cylinder along 𝐴𝐵 have

𝑣𝛼 = cos 𝜃. At the base of both sets of sliplines, there is a velocity jump tangential to

𝐴𝐵𝐶. Similarly, along the outermost yield surface 𝐶𝐷𝐺𝐷′𝐶 ′, another velocity jump

arises. In the viscoplastic computation, all these discontinuities become broadened
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Figure 2-1: Comparison of the numerical solution and the slipline pattern for a fully
rough (no-slip) cylinder. (a) Color plot of the logarithm of the strain rate (log10(�̇�))
from the numerical solution at Bi = 214 ≫ 1, together with streamlines (blue).
(b) The slipline pattern made up of 𝛼− and 𝛽−lines (red and blue; § 2.2.3) obtained
by Randolph and Houlsby [7] (§ 2.3.1). In the white region, the 𝛼−lines form circular
arcs with center A, and in the green region, the 𝛽−lines form the involutes to the circle.
Arrows indicate the direction of motion of the cylinder. In (a) and (b), the overall
patterns and the rigid plugs (with zero strain rate; shaded black) match except for
the rigidly rotating ones on the top and bottom of the cylinder. These residual plugs
appear due to the inconsistency of pressure change in the thin viscoplastic boundary
layer above the cylinder and the overlying plastic solution. As described in § 2.3.2,
they eventually vanish, albeit very slowly, with increasing Bingham number Bi, thus
confirming that the viscoplastic solution converges to the plastic one.
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into thin boundary layers with enhanced shear rate (see figure 2-1a and figure A-1

for a magnification of the boundary layer attached to the cylinder). The thickness of

these layers is expected to scale with either Bi−1/3 or Bi−1/2 [89], but otherwise they

leave no enduring viscous disfigurement of the plastic solution.

Along the 𝛽-lines, the Riemann invariant is 𝑝 − 2Bi𝜗. If we set 𝑝 = 0 along the

vertical symmetry line at 𝑥 = 0, this implies 𝑝 = 2Bi(𝜋−𝜗) throughout the deformed

region, and so the pressure on the surface of the cylinder is given by

𝑝(1, 𝜃) =

⎧⎨⎩ 2Bi(𝜋 − 𝜃), 𝜋/4 < 𝜃 < 𝜋/2,

2Bi(𝜋 − 𝜃) − 2Bi𝜋, 𝜋/2 < 𝜃 < 3𝜋/4.
(2.18)

which jumps by 2𝜋Bi at the centre of the fan.

With the stresses implied by the slipline pattern, we may integrate over the contour

𝐶𝐵𝐴𝐵′𝐶 ′ to determine the net horizontal force on the upper half of the cylinder 𝐹𝑥

(although the stress field is not prescribed over the plugs, the net force on these

regions must vanish, and so the horizontal force along 𝐵𝐶 or 𝐵′𝐶 ′ must equal that

along the corresponding plugged section of the cylinder’s surface). We then find the

drag coefficient [7],

𝐶𝑑 = − 𝐹𝑥

2Bi
= 2(𝜋 + 2

√
2) ≃ 11.94. (2.19)

2.3.2 The residual plugs

The rotating plugs of the viscoplastic computation in figure 2-1a are centred at the

fans of the slipline solution and are attached to the viscous boundary layer buffering

the cylinder surface. Since the viscous stress is prominent in that boundary layer,

the question arises as to how the pressure jump at the centre of the fan becomes

smoothed and whether this prompts a permanent adjustment of the slipline solution

that explains the rotating plugs. Indeed, both Tokpavi et al. [75] and Chaparian and

Frigaard [77] have suggested that these features are permanent for Bi → ∞. Such a

conclusion is problematic as it implies that the viscoplastic theory does not converge

to perfect plasticity.
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Figure 2-2: Pressure variation over the cylinder scaled by Bi, for the Bingham numbers
indicated. The dashed line corresponds to the pressure of the slipline solution given
by (2.18); the numerical profile approaches this solution as the Bingham number
increases. The inset shows overlapping profiles of 𝑝/Bi against (𝜃 − 𝜋/2)Bi1/7, which
confirms the scaling predicted from the boundary layer theory in appendix A.1.

The current computations suggest an alternative perspective: the rotating plugs

correspond to a persistent effect that arises from the pressure discontinuity of the

slipline solution at the centre of the centred fans. Because fluid flows through the

pressure gradient here, the discontinuity must necessarily become smoothed by viscous

stresses over a narrow window of angles 𝜃 surrounding 𝐴. The angular scale of

this smoothing regions turns out to be relatively wide (in comparison to the viscous

boundary layers), scaling very weakly with Bi; see figures 2-2 and 2-3d. Moreover, to

accommodate the smoothing of the pressure over this scale (which is too wide to allow

any viscous adjustments), the overlying plastic flow must plug up, thereby creating the

persistent features. Crucially, the size of the plug therefore asymptotically decreases

to zero, albeit extremely slowly, as Bi → ∞ (see figure 2-3a; we find, in particular,

that the radius decreases like Bi−3/28). Consequently, the drag coefficient should

approach the prediction in (2.19) for Bi → ∞, as illustrated by the numerical results

(figure 2-4a).

A number of other numerical results are shown in figure 2-3, including the rota-

tion rate of the plug and the thickness of the boundary layer against the cylinder.

Notably, directly under the plug, the boundary layer is thinned by the presence of the
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Figure 2-3: Scaling data for the residual rotating plug against Bi, showing (a) the plug radius
𝑦𝑝 − 1 where (0, 𝑦𝑝) is the the top of the plug, (b) it’s rotation rate 𝜔, (c) the boundary layer
thickness at 𝜃 = 1

2
𝜋 and 1

3
𝜋, and (d) the angular size of the smoothing region, estimated by

the location 𝜃* for which 𝑝 = 1
2
Bi. All these plug characteristics follow the scalings predicted

by the boundary layer theory of appendix A.1 (dashed lines).

Figure 2-4: (a) Drag coefficient 𝐶𝑑 against Bi for computations using a no-slip boundary
condition (red circles) or the plastic slip law in (2.7) with 𝜚 = 1 (blue stars). The dashed
line shows (2.19). (b) Plots of log10 �̇� and streamlines for two solutions at Bi = 28; the upper
half shows the no-slip cylinder, and the lower half the cylinder with (2.7) and 𝜚 = 1. Due to
the absence of the no-slip condition and the resulting viscoplastic boundary layer against the
cylinder, the rigidly rotating plug disappears in (b, bottom) as compared to (b, top) [§ 2.3.2].
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smoothing region, scaling with Bi−4/7. Beyond this region, the boundary layer has

a thickness of 𝑂(Bi−1/2), as expected from viscoplastic boundary-layer theory [89].

The thinner boundary layer scaling near 𝐴 is in disagreement with the conclusions of

Tokpavi et al. [75], although the difference between −1/2 and −4/7 is small (these

authors actually find a scaling of −0.53). A boundary-layer theory in support of the

observed scalings and the overall phenomenology of the rotating plug is provided in

appendix A.1.

A key feature of the boundary-layer theory is that the slowly converging scalings of

the rotating plug arise from the conspiracy between the flow within the boundary layer

and the overlying plastic deformation. The important role played by the boundary

layer therefore implies that the passage to the plastic limit should be different if that

sharp feature is not present. Indeed, when we recompute the solutions using the

slip law outlined in §2.2.1 (with 𝜚 = 1, corresponding to a fully rough surface), the

boundary layers against the cylinder are removed as all the tangential slip that is

required for the adjacent perfectly plastic deformation can be taken up along the

boundary itself. No slowly shrinking plugs then appear at the center of the fans

whatsoever and the convergence to the plastic limit is noticeably accelerated (see

figure 2-4).

2.4 Flow past a partially rough cylinder

Numerical solutions for partially rough cylinders, with boundary condition (2.7), are

shown in figures 2-5 and 2-6. The first of these figures displays strain-rate plots for two

sample solutions with different roughness factors 𝜚 = 0 (free slip) and 𝜚 = 1
2
. Aside

from viscoplastic shear layers that smooth out the velocity jumps, these numerical

solutions are very like the slipline solution proposed by Martin and Randolph [8]

which are also plotted in the figure and described in more detail below. Notably, the

solutions now contain rigidly rotating plugs that are permanent features in the plastic

limit Bi → ∞, and which attach directly on to the sliding cylinder surface.
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Figure 2-5: Numerical solutions (left) showing log10 �̇� with streamlines (light blue)
and slipline solutions [right; same color scheme as in figure 2-1] for (a) 𝜚 = 0 and
(b) 𝜚 = 0.5, both at Bi = 212. In the slipline construction, the angle 𝛽2 can be variable
and dictates the angular extent of the circular fan with center 𝑃 . Here, its value is set
according to (2.21) [63.0∘ in (a) and 69.2∘ in (b)], where the lower and upper bounds
match [see figure 2-6]. At these values, the slipline pattern compares well with the
numerical solution, with the velocity jumps [along arc GD in (a, left) and arcs BFH
and CDG in (b, left)] replaced by viscoplastic shear layers [bright yellow regions in
(a, b; left)]. This provides numerical evidence that the slipline pattern is the true
plastic solution. The primed points, 𝐵′ to 𝐹 ′, are the reflections of points, 𝐵 to 𝐹 ,
about the 𝑦-axis.
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2.4.1 The Martin and Randolph slipline solution and upper

bound

As for Randolph and Houlsby’s slipline field shown in figure 2-1, the pattern pro-

posed by Martin and Randolph [8] consists of centred fans and involutes that leave

a triangular plug at the front and back of the cylinder. However, the centres of fans

are now displaced off the surface and the cores of the fans are replaced by the rigidly

rotating plugs. Focussing on the upper right half of the pattern, the fan is centred

at point 𝑃 and occupies the region 𝐸𝐹𝐷𝐷′𝐸 ′ in figure 2-5. The rotating plug spans

𝐴𝐸𝐼𝐸 ′. The involutes that extend the 𝛼−lines from the fan into 𝐸𝐵𝐶𝐷𝐹 correspond

to 𝛽−lines that are tangent to an inner circle centred at 𝑂 with radius

𝜆 = cos

(︂
cos−1 𝜚

2

)︂
. (2.20)

This choice for 𝜆 ensures that the 𝛼−lines meet the surface of the cylinder at an angle

(𝜋/4 − ∆/2), where ∆ = sin−1 𝜚, in line with the boundary condition (2.7b) on 𝐸𝐵,

|𝜏𝑟𝜃|/Bi = 𝜚. In other words, the unwrapping of the 𝛽−lines from the inner circle

ensures that the slip condition is satisfied along the yielded boundary of the cylinder,

and follows Randolph and Houlsby’s original generalization of figure 2-1 for 𝜚 < 1.

The main difference between their generalization and the construction of Martin and

Randolph is the introduction of the rigidly rotating plugs at the cores of the fans.

Such plugs are permitted because any slipline can be taken as a yield surface and the

normal velocity across the sliding, unyielded boundary can be made continuous by

demanding that the rotation rate of the plugs is sin 𝛽2/𝜆, where 𝜋 − 𝛽2 dictates the

angular extent of the fan (the angle between 𝐼𝑃𝐸). The introduction of the plugs

then shifts the centre of the fan 𝑃 so that it lies a vertical distance 𝜆/ sin 𝛽2 above 𝑂.

Again, the velocity field over the plastic region is prescribed by 𝑣𝛽 = 0 and match-

ing 𝑣𝛼 with the normal velocity to the contour 𝐸𝐵𝐶. Velocity jumps thereby occur

along the 𝛼−lines 𝐵𝐹𝐻 and 𝐶𝐷𝐺, which broaden into the prominent viscoplastic

shear layers of the computations in figure 2-5, and fluid slides along the cylinder

boundary 𝐴𝐸𝐵.

57



Figure 2-6: Upper (blue) and lower (black) bounds derived from the Martin and
Randolph [8] slipline solution for the values of 𝜚 indicated; the circles indicate the
minimum of the upper bound, which coincides with the intersection of the lower and
upper bounds. For 𝛽2 less than this minimum, the lower bound exceeds the upper
bound and is thus spurious (shown dashed). For 𝛽2 > 1

2
𝜋, the velocity and stress

fields become inconsistent, as in the original Randolph and Houlsby [7] construction
(the corresponding bounds are shown by dotted lines). The red stars show the ex-
trapolated values for Bi → ∞ of the drag and angle 𝛽2 from numerical computations.
The excellent match between the numerical computations (red stars) and the inter-
section of the lower and upper bound curves indicates that the slipline solution at
the corresponding 𝛽2 is the true plastic solution. [The angle 𝛽2 is estimated from
the numerical computations by matching the rotation rate of the rigid plugs with
the expression sin 𝛽2/𝜆. This avoids tracing the yield surfaces which are sensitive to
numerical errors.]
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Martin and Randolph [8] treat the angle 𝛽2 as an optimization parameter that

can be adjusted to vary the upper bound on the drag force computed from the net

dissipation rate incurred by the velocity field. The smallest possible drag coefficient

provides the best upper bound, as illustrated in figure 2-6, which plots the upper

bound against 𝛽2 for a number of choices of the roughness factor 𝜚. (Martin and

Randolph [8] also include the inclination of the triangular plug and the radius 𝜆 as

further optimization parameters; these turn out to be optimized by the choices of 45∘

and (2.20), respectively, both of which are in any case demanded by the boundary and

symmetry conditions.) Note that, as 𝛽2 → 1
2
𝜋+ cos−1 𝜆, the rotating plug disappears

and the slipline construction reduces to that of Randolph and Houlsby [7].

2.4.2 Lower bound and torque balance

The stress field of the slipline solution can also be used to compute the drag force

which, in principle, sets a complementary lower bound. For this task, we again set

𝑝 = 0 along the y-axis, implying 𝑝 = 2Bi𝜋 − 2Bi𝜗 in the regions of deformation.

With that pressure field and the known slipline angle, we may then calculate the

drag force on the cylinder by integrating over the contour 𝐼𝐸𝐵𝐶. The details of this

calculation are provided in appendix A.2.1. This calculation is incomplete, however,

because we do not extend the stress field into the plugs to demonstrate that an

admissible solution that satifies the yield condition exists there. Nevertheless, the

construction of Randolph and Houlsby can be used to find admissible stress fields for

both the triangular plugs at the front and back of the cylinder and the surrounding

stagnant plug. The only missing piece of the puzzle is therefore the establishment of

an admissible stress distribution for the rotating plugs.

Modulo this limitation, the implied lower bound on 𝐶𝑑 is also plotted in figure 2-6

for comparison with the upper bound. The lower bound passes through the upper

bound at exactly its minimim. That is, the upper bound and lower bounds match

each other at the optimal choice for 𝛽2, which suggests that the corresponding slipline

solution is the actual true solution. However, for smaller values of 𝛽2 (indicated by

dot-dashed lines in the figure), the lower bound calculation yields a higher value than
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the upper bound, which is not possible. This flaw must have its origin in the lack of

an admissible stress field for the rotating plugs.

The slipline construction also shares the same issue of incompatibility suffered by

the original Randolph and Houlsby solution (which must be the case, given that the

construction reduces to this solution in the limit 𝛽2 → 1
2
𝜋 + cos−1 𝜆): for 𝛽2 > 1

2
𝜋

the shear stresses along the 𝛼−lines are not consistent with the corresponding shear

rates everywhere throughout the deforming region. Nevertheless, this inconsistency

does not affect the optimal solution for 𝛽2.

More light can be shed on the rotating plug by considering the balance of torques

acting on this region (appendix A.2.2). In particular, and with reference to figure 2-

5b, the upper plug is the crescent formed from the two circular arcs 𝐸𝐴𝐸 ′ and 𝐸𝐼𝐸 ′.

Along these arcs, the shear stresses are 𝜚Bi and −Bi, respectively, which imply the

torqes 𝑇EAE′ = 2𝜚Bi(1
2
𝜋 − 𝜃

E
) and 𝑇EIE′ = −2𝑟2

EI
Bi(𝜋 − 𝛽2), acting about the centres

of the respective circles (i.e. 𝑃 and 𝑂). Here, 𝜃
E

= 𝛽2 − 1
4
𝜋 + 1

2
∆ is the polar angle

of point 𝐸 and 𝑟
EI

= 𝜆 cot 𝛽2 +
√

1 − 𝜆2 is the radius of the circular arc 𝐸𝐼𝐸 ′. In

addition to these torques, the difference between the two horizontal forces on the arcs

provides a moment that also acts on the plug. This moment is −𝜆𝐹EIE′/ sin 𝛽2, if

𝐹EIE′ is the horizontal force on the section 𝐸𝐼𝐸 ′, which must be equal and opposite

to the force on 𝐸𝐴𝐸 ′ if the plug is in force balance. But 𝐹EAE′ = 2𝐹AE, where

𝐹AE = −𝑟
EI

Bi[2(𝜋 − 𝛽2) cos 𝛽2 + sin 𝛽2] is the force on the section 𝐴𝐸 (see appendix

A.2.1). Hence, the rotating plug is free of torques if 𝑇EIE′ −𝑇EAE′ −2𝜆𝐹AE/ sin 𝛽2 = 0,

or

[(𝜋 − 𝛽2)(
√

1 − 𝜆2 − 𝜆 cot 𝛽2) − 𝜆](𝜆 cot 𝛽2 +
√

1 − 𝜆2)

+ 𝜚(3
4
𝜋 − 𝛽2 + 1

2
∆) = 0. (2.21)

This condition picks out a unique value for 𝛽2 which coincides exactly with the optimal

value. We conclude that there cannot be an admissible stress field for the rotating

plug, except potentially at the torque-free value of 𝛽2. Thus, Martin and Randolph’s

slipline field with this choice is the only candidate for the true plastic solution. This
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conclusion is supported by the numerical computations, which match the predictions

of the slipline theory for a variety of choices for the roughness parameter 𝜚 (see

figures 2-5 and 2-6), and which explicity construct admissible stress solutions for the

rotating plug. Thus, the combination of slipline theory and numerical computation

provides evidence that the slipline patterns of figure 2-5 are the actual perfectly plastic

solutions.

2.5 Viscoplastic squirmers

We now consider models for swimming micro-organisms driven by ciliary surface

motions in a yield-stress fluid. More specifically, we adopt prescribed surface velocity

patterns to drive locomotion, as outlined in §2.7, focussing primarily on tangential

motions with 𝑉𝑝 = sin𝑛𝜃 + 𝑎 sin𝑚𝜃 and 𝑚 > 1. We also briefly consider swimming

patterns comprising a normal surface velocity.

2.5.1 Newtonian limit

As described by Blake [83], it is straightforward to solve the Stokes problem in the

Newtonian limit to furnish the streamfunction,

𝜓 = 𝜓0 = 𝑈𝑠𝑟 sin 𝜃 + 1
2
(𝑟−𝑛 − 𝑟2−𝑛) sin𝑛𝜃 + 1

2
𝑎(𝑟−𝑚 − 𝑟2−𝑚) sin𝑚𝜃 (2.22)

for the prescribed tangential surface motion. This result incorporates the Stokes

paradox in that there is no bounded solution for 𝑟 → ∞ unless 𝑈𝑠 = 1
2

and 𝑛 = 1.

Moreover, the solution implies that 𝐹𝑥 in (2.5) is identically zero. A similar result

holds if the normal surface velocity is prescribed [83].

Following Hewitt and Balmforth [35], we may proceed beyond this leading solution

and compute the correction prompted by the yield stress using perturbation theory.

In the vicinity of the cylinder (𝑟 = 𝑂(1)) this correction is forced by the need to

match the solution with that in the far field (𝑟 ≫ 1), as in the classical resolution

of the Stokes paradox by the inclusion of inertia. Here, however, the far field region

61



is controlled by the yield stress. In particular, balancing the two sides of (2.13) for

𝑟 ≫ 1, we must have that 𝜓 = 𝑂(𝑟2Bi) in the far field. But, provided 𝑈𝑠 ̸= 1
2
𝛿𝑛1, 𝜓0

grows like 𝑟. Hence, the far-field balance demands that 𝑟 = 𝑂(Bi−1). Moreover, the

yield stress eventually arrests motion here, limiting the flow to a yielded region with

a radial extent of 𝑂(Bi−1).

The correction to the near-field solution again satisfies the biharmonic equation

and is proportional to 2𝑟 log 𝑟 − 𝑟 + 𝑟−1, in view of the boundary conditions on the

cylinder and the need to discard terms that grow any more rapidly with 𝑟 [90]. This

correction breaks asymptotic order and becomes of comparable size to 𝜓0 as one enters

the far field, leading to the estimate, 𝜓 − 𝜓0 = 𝑂((𝑈𝑠 − 𝛿𝑛1)/ log Bi−1). Hence, the

horizontal drag force, which is dictated by the correction, can be calculated and the

match to the far field demands

𝐹𝑥 = −4𝜋
(𝑈𝑠 − 1

2
𝛿𝑛1)

log Bi−1 . (2.23)

Evidently, the cylinder is force-free to leading order when 𝑈𝑠 = 1
2
𝛿𝑛1, which is the

locomotion speed of a free swimmer in the limit Bi → 0. Thus, in the Newtonian

limit, surface motions without a sin 𝜃 component cannot swim. Note that, because

the streamfunction decays more rapidly when 𝑈𝑠− 1
2
𝛿𝑛1 → 0, all the preceding scalings

must change for the force-free case.

2.5.2 Symmetries

With the surface velocity condition 𝑉𝑝 = sin𝑛𝜃 + 𝑎 sin𝑚𝜃, the problem can inherit

spatial symmetries that constrain the solutions. First, if the driving angular velocity

pattern contains multiple lines of reflection symmetry, then the problem with 𝑈𝑠 = 0

is invariant under a set of finite angular rotations. This implies that the driving

pattern possesses no preferred swimming direction and force-free states with 𝑈𝑠 = 0

exist whatever the Bingham number. Single mode patterns with 𝑛 > 1 and 𝑎 = 0 are

of this type.

Second, when 𝑚 is even and 𝑛 is odd, the equations and boundary conditions
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are invariant under the transformation, (𝑈𝑠, 𝑎, 𝜃, 𝑢, 𝑣, 𝜓) → (𝑈𝑠,−𝑎, 𝜋 − 𝜃,−𝑢, 𝑣, 𝜓).

This implies that, given a solution with a certain 𝑈𝑠 and 𝑉𝑝 = sin𝑛𝜃 + 𝑎 sin𝑚𝜃, one

can generate another solution with the same translation speed but driving pattern

𝑉𝑝 = sin𝑛𝜃−𝑎 sin𝑚𝜃; the two solutions are symmetical under reflection about 𝜃 = 1
2
𝜋.

Consequently, the force-free swimming speed is independent of the sign of 𝑎. Similarly,

the transformation (𝑈𝑠, 𝑎, 𝜃, 𝑢, 𝑣, 𝜓) → (−𝑈𝑠,−𝑎, 𝜋 − 𝜃, 𝑢,−𝑣,−𝜓) again leaves the

system invariant if 𝑚 is odd and 𝑛 is even. Thus, in this case, for a swimmer with

(𝑎, 𝑈𝑠), there is another with (−𝑎,−𝑈𝑠).

Finally, for the alternative driving pattern 𝑈𝑝 = cos𝑛𝜃 + 𝑎 cos𝑚𝜃 in (2.11) with

(𝑛, 𝑎) = (1, 0), if we set 𝑈𝑠 = 1 − �̂�𝑠, the boundary condition becomes (𝑢, 𝑣)𝑟=1 =

(�̂�𝑠 cos 𝜃, sin 𝜃− �̂�𝑠 sin 𝜃). But this is identical to the driving pattern in (2.9) for 𝑉𝑝 =

sin 𝜃 and translation speed �̂�𝑠. In other words, these particular squirmer solutions

are identical, except for the switch in translation speed.

2.5.3 Numerical results

To gain a broader perspective on the problem, we now solve the system of equations

numerically, calculating solutions with different (fixed) translation speeds 𝑈𝑠 and

Bingham numbers Bi, for a variety of driving patterns. To begin, we consider the

simplest case, with (𝑛, 𝑎) = (1, 0) (figure 2-7). The most obvious feature of the

computed flow patterns is their similarity to those around translating cylinders: in

all but the example with highest translation speed in figure 2-7, the flow is localized to

a region with a radial extent that is comparable to the diameter of the cylinder, and

prominent recirculation cells with embedded rotating plugs appear above and below.

In fact, at higher Bingham number, the organization of the flow looks identical to the

Randolph and Houlsby slipline pattern (figure 2-1), with simply a different velocity

distribution along the 𝛼−lines. Notably, the tangential surface forcing strengthens

the boundary layers which are now able to adjust the plastic deformation beyond.

As a result, the rotating plugs continue to widen with increasing Bi and become

permanent in the plastic limit. The collapse to the Randolph and Houlsby stress

field is reflected in the drag coefficient, which equilibrates to 𝐶𝑑 = −(2𝜋 + 4
√

2) for
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Figure 2-7: Squirmer solutions for (𝑛, 𝑎) = (1, 0) showing log10 �̇� overlain by streamlines (blue), with
Bi = 1 (a–c) and Bi = 28 (d–f), for 𝑈𝑠Bi1/2 ≈ 0 (a, d), 0.1 (b, e), 0.38 (c, f), respectively. In (f), the
full circle has the scale of the axes as in (d) and (e), whereas the quarter circle shown in the inset is a
magnification to highlight the thin boundary layer. (g) Numerical drag coefficients 𝐶𝑑 against scaled
translation speed Bi1/2𝑈𝑠 match well with the asymptotic predictions for Bi ≫ 1 from the Randolph
and Houlsby slipline solution (§3) and the boundary-layer analysis of § 2.5.4 (dashed black lines). The
𝐶𝑑 = 0 line (dotted) corresponds to the swimming speed of force-free squirmers.

Figure 2-8: Squirmer solutions showing log10 �̇� at Bi = 28 for (a–c) 𝑛 = 3,𝑚 = 0 and (d–f) 𝑛 = 5,𝑚 = 0
with the imposed swimming speed (a,d) 𝑈𝑠 = −0.015, (b,e) 𝑈𝑠 = 0 and (c,f) 𝑈𝑠 = 0.015. (g) The
variation of the drag coefficient 𝐶𝑑 with 𝑈𝑠 for 𝑛 = 3 (blue stars) and 𝑛 = 5 (red squares). Since
𝑛 > 1 and 𝑚 = 0, 𝐶𝑑 = 0 [dashed line in (g)] is necessary for 𝑈𝑠 = 0 due to multiple lines of reflection
symmetry (see § 2.5.2).
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𝑈𝑠 . 0.16Bi−1/2 at high Bi (figure 2-7g). With higher translation speeds, however,

the extent of the yielded region abruptly decreases, with all deformation becoming

comsumed by the boundary layer around the cylinder for Bi ≫ 1 (figure 2-7f). The

switch in flow pattern prompts a fall in the magnitude of the drag coefficient, which

passes through zero at a critical value, 𝑈 𝑓𝑓
𝑠 , corresponding to the locomotion speed

of a swimmer moving under its own power.

Flow fields around single-mode squirmers with higher 𝑛 are shown in figure 2-

8. As expected from the symmetries of the problem, the drag coefficient for these

solutions vanishes only for 𝑈𝑠 = 0, precluding locomotion at any Bi (see §2.5.2). In

the force-free states, the flow patterns take the form of a straightforward geometrical

generalization of the Randolph and Houlsby slipline field, containing a network of

2𝑛 centred fans with angular extent 𝜋(1
2

+ 𝑛−1) and triangular plugs attached to

the cylinder. These solutions become distorted by translation, but the patchwork of

attached plugs and rotating fans persists, with broader seams of more complicated

plastic deformation. Again, the fans contain persistent plugs, sometimes becoming

displaced from the cylinder surface in the manner of the Martin and Randolph slipline

field.

The force-free swimming states can be computed directly by employing an interval-

bisection algorithm to vary 𝑈𝑠 until 𝐶𝑑 = 0. Figure 2-9(a–h) shows the output of this

algorithm for both the simple swimmer with (𝑛, 𝑎) = (1, 0), and for pushers and

pullers with (𝑛,𝑚) = (1, 2) and varying 𝑎. As discussed in §2.5.2, since 𝑛 is odd

and 𝑚 is even in this case, the solutions with 𝑎 < 0 are reflections of those with

𝑎 > 0 about the vertical axis, with the same swimming speed. Thus, as in the

Newtonian limit, these pushers and pullers always travel at equal speeds. In all

cases, the swimming speed converges to the Newtonian limit 𝑈𝑠 = 1
2

for Bi → 0

(see §2.5.1 and Ref. [83]). At large yield stress, the swimming speeds instead decline

as 𝑈𝑠 ∼ Bi−1/2 (see figure 2-9i). The corresponding force-free flow patterns remain

confined to the surface boundary layers at low values of 𝑎. But when this parameter

is larger, the states becomes less confined and again adopt a wider scale pattern

of plastic deformation with the form of a patchwork of triangular plugs and fans,
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Figure 2-9: Force-free squirmer solutions showing showing log10 �̇� (same color bar as in figure 2-8;
streamlines, blue) for surface velocities with 𝑛 = 1, 𝑚 = 2. (a–d) Bi = 1 and (e–h) Bi = 28, for
(a,e) 𝑎 = 0, (b,f) 𝑎 = 0.25, (c,g) 𝑎 = 1 and (d,h) 𝑎 = 2. (i) The corresponding swimming speeds.
(j) Rescaled swimming speeds for 𝑎 = 0 and 𝑎 = 0.25 asymptotically approach predictions of the
boundary-layer theory (§2.5.4, dashed) as Bi → ∞.

Figure 2-10: Force-free squirmer solutions with (𝑛,𝑚) = (1, 3) and Bi = 28 showing log10 �̇� for
(a) 𝑎 = 0.25, (b) 𝑎 = −0.25, (c) 𝑎 = 1, (d) 𝑎 = −1, (e) 𝑎 = 2 and (f) 𝑎 = −2. (g–i) Variation of the
swimming speed with Bi. In (g), the asymptotic prediction (dashed) from (2.36) for 𝑎 = 0.25 matches
well with the numerical data.

66



much like the slipline solutions of §3 and §4 (see figure 2-9h). Such patterns are not,

however, the only possibility; figure 2-9g, for example, displays a swimmer in which

closer examination reveals curved sliplines that peel off the surface boundary layer,

and incorporate a non-circular fan pinned at the centre of circulation.

Force-free pushers and pullers with (𝑛,𝑚) = (1, 3) are shown in figure 2-10(a–f).

In this case, since 𝑚 and 𝑛 are both odd, the 𝑎 → −𝑎 symmetry is lost (although

the flow patterns remain symmetrical about the 𝑦−axis) and the swimming speed

depends on the sign of 𝑎. Regardless of this, however the flow is again confined to

the surface boundary layers for lower values of 𝑎, and features larger-scale plastic

deformation for higher 𝑎, with the swimming speed scaling as 𝑈𝑠 ∼ Bi−1/2 in the

plastic limit and converging to 𝑈𝑠 = 1
2

for Bi → 0.

A less expected result is shown in figure 2-11, which displays flow fields and

swimming speeds for a swimmer with (𝑛,𝑚) = (2, 3). In the Newtonian limit, such a

mixed-mode driving pattern cannot provide propulsion as it does not contain a sin 𝜃

component. Moreover, swimming is not possible with either of the 𝑛 = 2 and 𝑚 = 3

components individually. With a finite yield-stress, however, propulsion becomes

possible, and the swimmer reaches a maximum speed at an intermediate value of Bi

(figure 2-11c; again, the symmetry of the driving pattern implies that 𝑈𝑠 does not

depend on the sign of 𝑎).

Finally, we report an example exploiting the prescribed normal surface velocity

in (2.11), rather than tangential motions. As argued in §2.5.2, the simplest example

of this model with 𝑛 = 1 and 𝑎 = 0 is equivalent to the squirmer with the tangential

surface velocity 𝑉𝑝 = sin 𝜃, but for the switch in translation speed 𝑈𝑠 → 1−𝑈𝑠. Hence,

all the results in figure 2-7 and 2-9 immediately carry over, although the switch in 𝑈𝑠

implies a very different limit for the force-free swimming speed for Bi ≫ 1. Additional

results for 𝑚 = 2 and varying 𝑎 are displayed in figure 2-12. When 𝑎 is not small, the

swimmer is no longer equivalent to a squirmer with tangential surface velocity; larger-

scale patterns of plastic deformation develop with both curved sliplines, centred fans

and constant-stress triangles. The swimming speed now converges to an 𝑎−dependent

constant for Bi → ∞ (the Newtonian limit is again 𝑈𝑠 → 1
2
).

67



Figure 2-11: Force-free squirmer solutions showing log10 �̇� for (𝑛,𝑚) = (2, 3) and 𝑎 = 1 for (a) Bi = 1
and (b) Bi = 28. (c) The variation of the non-zero swimming speed 𝑈𝑠 with Bi. In contrast, these
swimming modes have a zero swimming speed in the Newtonian limit (Bi → 0).

Figure 2-12: Force-free squirmer solutions showing log10 �̇� for the normal surface velocity condition
(2.11) with (a) 𝑎 = 0.1, (b) 0.25 and (c) 1, at Bi = 28. (d) The swimming speed approaches the
Newtonian limit of 0.5 as Bi → 0 and a finite value dependent on 𝑎 as Bi → ∞.

1
3Bi

−

Figure 2-13: Boundary-layer thicknesses of squirmers for (a) (𝑛, 𝑎) = (1, 0), (b) (𝑛,𝑚, 𝑎) = (1, 2, 0.25),
and (c) (𝑛,𝑚, 𝑎) = (1, 3, 0.25), with Bi = 26 (black), Bi = 28 (blue), Bi = 210 (red) and
Bi = 212 (green). The boundary-layer theory predictions from (2.31)[dashed lines] match well with
the numerical profiles except near 𝜃 = 0, 𝜋.
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2.5.4 Boundary layer theory

Boundary-layer structure

When flow becomes confined to the boundary layer attached to the cylinder, as in

figures 2-9(e,f) and 2-10(a,b), we rescale the variables to describe that narrow region

(cf. appendix A.1):

𝑟 = 1 + Bi−1/2𝜂, (2.24a)

[𝑢, 𝑈𝑠] = Bi−1/2[𝑈(𝜂, 𝜃), 𝑈1], (2.24b)

𝑣 = 𝑉 (𝜂, 𝜃), (2.24c)

𝑝 = Bi𝑃 (𝜂, 𝜃). (2.24d)

At leading order, local force balance then demands,

𝜕𝜂𝑃 = 0 and 𝜕2𝜂𝑉 + 2 sgn (𝜕𝜂𝑉 ) = 𝑃𝜃. (2.25)

In terms of the rescaled variables, the boundary conditions in equation (2.9) become

𝑉 (0, 𝜃) ∼ 𝑉𝑝(𝜃) and 𝑈(0, 𝜃) = 𝑈1 cos 𝜃 (2.26)

whereas the match to the surrounding plug at the yield surface, 𝜂 = 𝜂𝑏(𝜃), demands

that

𝑉 (𝜂𝑏, 𝜃) = 𝜕𝜂𝑉 (𝜂𝑏, 𝜃) = 𝑈(𝜂𝑏, 𝜃) = 0. (2.27)

We therefore find the velocity profile,

𝑉 = 𝑉𝑝(𝜃)

(︂
1 − 𝜂

𝜂𝑏

)︂2

, (2.28)

with

𝜕𝜃𝑃 = 2

(︂ |𝑉𝑝|
𝜂2𝑏

− 1

)︂
sgn(𝑉𝑝). (2.29)
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The integral of the leading-order continuity equation, 𝜕𝜃𝑉 + 𝜕𝜂𝑈 ∼ 0 across the

boundary layer now furnishes

𝜕

𝜕𝜃

[︂
𝜂𝑏𝑉𝑝(𝜃)

3

]︂
− 𝑈1 cos 𝜃 = 0. (2.30)

Focussing on surface motions that are up-down antisymmetric with 𝑉𝑝(0) =

𝑉𝑝(𝜋) = 0, we now find the boundary-layer profile,

𝜂𝑏(𝜃) =
3𝑈1 sin 𝜃

𝑉𝑝(𝜃)
. (2.31)

This thickness is only positive when the angular surface motion 𝑉𝑝(𝜃) is directed

opposite to sense of translation, sgn(𝑈𝑠). Otherwise, the balances implied by the

scalings in (2.24) are not consistent, which we interpret to signify that the flow cannot

be confined to the surface boundary layer. Indeed, the numerical solutions in §2.5.3

display larger-scale flow patterns at large Bi whenever 𝑈𝑠/𝑉𝑝 < 0.

Figure 2-13 compares the predictions of (2.31) with some of the measured yield

surfaces of the numerical solution with confined flow patterns. In the simple case

with 𝑉𝑝(𝜃) = sin 𝜃 (figure 2-13a), the boundary layer has the constant width, 𝜂𝑏 =

(𝑟𝑝 − 1)Bi1/2 =
√︀
𝜋/2, where 𝑟𝑝 is the radius of the yield surface. The yield surfaces

of the computations are indeed relatively flat and compare well with the prediction,

except close to the front and back of the cylinder where the boundary layer thickness

sharply declines over further “corner regions.” For squirmers with 𝑉𝑝 = sin 𝜃+𝑎 sin𝑚𝜃,

the boundary layer thickness varies with position; again the predictions match well

with numerical results except for the adjustments at the front and back (figure 2-

13(b,c)).

For 𝑉𝑝𝑈1 < 0, the emergence of plastic deformation outside the boundary layer

(with (𝑢, 𝑣) ∼ 𝑂(Bi−1/2)) modifies the final boundary condition in (2.26), and there-

fore the flux balance in (2.30). The resulting flow into or out of the boundary layer

then maintains a boundary layer of finite thickness. Importantly, however, the scal-

ings of the boundary layer in (2.24) do not change although one must now complete

the solution by matching to the adjacent region of perfectly plastic deformation.
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Drag force and swimming speed

Given the surface pressure Bi𝑃 and tangential shear stress Bi sgn(𝜕𝜂𝑉 ) = −Bi sgn(𝑉𝑝),

the net horizontal force on the swimmer is given by

𝐹𝑥 = −Bi

∫︁ 𝜋

−𝜋

[𝑃 cos 𝜃 − sgn(𝑉𝑝) sin 𝜃]𝑑𝜃 = 2Bi

∫︁ 𝜋

0

(︂
2|𝑉𝑝|3

9𝑈2
1 sin 𝜃

− sin 𝜃

)︂
sgn(𝑉𝑝)𝑑𝜃.

(2.32)

The drag therefore vanishes for

𝑈 𝑓𝑓
𝑠 =

Bi−1/2

3

√︃
2

∫︁ 𝜋

0

d𝜃
𝑉𝑝(𝜃)3

sin 𝜃

[︂∫︁ 𝜋

0

d𝜃 sin 𝜃 sgn(𝑉𝑝)

]︂−1/2

, (2.33)

furnishing an asymptotic prediction of the locomotion speed of the force-free swimmer.

The drag from (2.32) also increases with decreasing translation speed 𝑈𝑠, diverging

for 𝑈𝑠 → 0, and must therefore exceed that associated with the Randolph and Houlsby

slipline solution below some threshold in 𝑈𝑠. We interpret the cross-over to correspond

to the switch from the confined flow pattern to larger-scale plastic deformation. The

deconfinement of the flow must therefore occur for

𝑈𝑠 = 𝑈 𝑓𝑓
𝑠

{︃
1 + 2(𝜋 + 2

√
2)

[︂∫︁ 𝜋

0

d𝜃 sin 𝜃 sgn(𝑉𝑝)

]︂−1
}︃−1/2

. (2.34)

For the simplest case with 𝑉𝑝 = sin 𝜃 (𝑛 = 1, 𝑎 = 0), the drag coefficient implied

by (2.32) is

𝐶𝑑 = − 𝐹𝑥

2Bi
= 2 − 𝜋

9𝑈2
1

, (2.35)

which is compared to the numerical results in figure 2-7g; the switch in flow pattern

for (2.34) also matches satisfyingly with the abrupt drop in the magnitude of 𝐶𝑑 in the

numerical solutions. The corresponding force-free swimmer has 𝑈 𝑓𝑓
𝑠 =

√︀
𝜋/18Bi−1/2,

which again compares well with the numerical results (figure 2-7g).
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For squirmers with 𝑉𝑝 = sin 𝜃 + 𝑎 sin𝑚𝜃, the swimming speed is

𝑈 𝑓𝑓
𝑠 =

⎧⎨⎩
1
3
Bi−1/2

√︁
1
2
𝜋(1 + 3𝑎2) 𝑚 even,

1
3
Bi−1/2

√︁
1
2
𝜋(1 + 3𝑎2 + 𝑎3) 𝑚 odd,

(2.36)

provided the boundary layer thickness remains finite everywhere, which demands that

𝑎 < 𝑚−1 for 𝑚 even and 𝑎 . sin(3𝜋/2𝑚) for 𝑚 odd. Figures 2-9j and 2-10g include

the predictions in (2.36).

Note that the prediction for the swimming speed in (2.33) relies on the solutions

in (2.29) and (2.31), which fail when flow is no longer confined to the boundary layer.

Nevertheless, because the scalings of the problem do not change in that situation, the

swimming speed still scales with Bi−1/2, as seen in the numerical computations (e.g.

figure 2-9i). The match to the surrounding plastic deformation, however, determines

the coefficient 𝑈1.

2.6 Conclusions

In this chapter, we have investigated viscoplastic flows around cylinders, with an

emphasis on the limit of large yield stress. For a translating cylinder with a no-

slip surface, we compared analytical plasticity solutions based on slipline theory with

viscoplastic computations. Significant differences between the two arise due to the

presence of rigidly rotating plugs above and below the cylinder in the computations,

which are not present in the slipline solutions. These plugs ride on top of the viscous

boundary layer that shrouds the cylinder, leading one to wonder whether they inter-

fere with the plastic limit of the viscoplastic model. By performing a suite of careful

computations and developing a boundary layer theory, we showed that such features

do actually disappear in the plastic limit (Bi → ∞), implying that viscoplasticity

does converge to ideal plasticity.

We then modified the boundary condition on the translating cylinder to allow for

partial slip over its surface. This situation corresponds to partially rough cylinders

in ideal plasticity, for which the slipline solution has not been previously identified,

72



with an original construction proposed by Randolph and Houlsby [7] having been

shown to be inconsistent for partial slip [8, 80]. Instead, we found our computations

matched with an alternative slipline pattern proposed by Martin and Randolph [8] as

an upper bound solution based on its velocity field. This alternative pattern contains

genuine rigid plugs rotating above and below the cylinder, attached to, and sliding

over the surface. Delving further into Martin and Randolph’s slipline construction,

we found that the stress solution suggests a lower bound that matches the upper

bound provided the rotating plugs are free of any net torque. This implies that

the slipline field actually provides the true plastic solution. However, the slipline

theory is incomplete in this example because no stress field is provided for the plugs

that matches the partially rough surface conditions and is consistent with the yield

condition. Nevertheless, the computations do explicitly construct an acceptable stress

field for the plugs, providing numerical evidence for the conclusion that Martin and

Randolph’s slipline pattern is the true plastic solution.

The slipline patterns of the translating cylinders provide a set of tools to under-

stand viscoplastic flow around cylinders with a variety of other surface conditions. In

the third thread of this study, we applied this idea to models of cylindrical “squirmers”

swimming in yield-stress fluid. The slipline patterns do indeed characterize many of

the flow structures seen around such model micro-organisms when we approach the

plastic limit. However, we also found that flow can become consumed into the viscous

boundary layers against the cylinder surfaces, allowing us to analytically construct

the swimming states. We provided the viscoplastic analogues of squirming ‘pushers’

and ‘pullers’, for which the driving surface velocity is concentrated either to the back

or front of the cylinder. While these squirmers have identical swimming speeds, as in

the Newtonian limit, we also identified driving surface velocity patterns for which this

symmetry is not preserved if the fluid has a yield stress. We also provided examples

of swimming patterns that would be immobile in the Newtonian limit, but may swim

when there is yield stress because of the non-linearity of the fluid rheology.

For squirmers driven by a prescribed tangential surface velocity in Newtonian fluid,

without considering the specific details of the surface velocity pattern, the swimming
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speed 𝒰𝑠 scales with the characteristic speed of the driving surface velocity 𝒰 and

the power input per unit swimming speed and cylinder length is 𝒫 ∼ 𝜇𝒰 . In the

opposite, plastic limit, the swimming speed and power turn out to scale as

𝒰𝑠 ∼ 𝒰3/2

√︂
𝜇

𝜏𝑌ℛ
and 𝒫 ∼ ℛ𝒰𝜏𝑟𝜃

𝒰𝑠

∼ (𝜏𝑌ℛ)3/2

(𝜇𝒰)1/2
, (2.37)

if ℛ is the cylinder radius and 𝜇 and 𝜏𝑌 are the fluid (plastic) viscosity and yield stress.

The decaying dependence on yield stress and presence of the viscosity is symptomatic

of the viscous boundary layers against the cylinder surface which activate locomotion

(the Bi−1/2 layers in §5). Note that the effective viscosity of the medium in the plastic

limit is 𝜇eff ∼ 𝜏𝑌ℛ/𝒰 ≫ 𝜇 (being given by the relatively large yield stress). Therefore,

the scaling of the swimming speed is 𝒰𝑠 ∼ 𝒰
√︀
𝜇/𝜇eff , which implies that the swimmer

moves much slower in the viscoplastic medium than in a Newtonian fluid with the

same effective viscosity 𝜇eff , for a given surface velocity pattern. Moreover, the input

power per unit length and swimming speed is 𝒫 ∼ 𝜇eff𝒰
√︀
𝜇eff/𝜇, rather larger than

the Newtonian equivalent (𝜇eff𝒰).

Thus, swimming by tangential squirming motions in a nearly plastic medium

is relatively inefficient, primarily as a result of the lubricating effect of the viscous

boundary layers against the cylinder’s surface. The situation is quite different if

swimming is driven by normal surface motions. The swimming speed in the plastic

limit then remains of order 𝒰 , as in the Newtonian limit, and the corresponding

power input per unit swimming speed and length is given by 𝒫 ∼ 𝜏𝑌ℛ ∼ 𝜇eff𝒰 . Now

the swimming speed and power input are comparable to those for motion through

Newtonian fluid with viscosity 𝜇eff (a situation shared by the viscoplastic version of

Taylor’s swimming sheet, considered by Hewitt and Balmforth [34]).

Another key feature of the swimming dynamics is that the yield stress always lim-

its flow to within a yield surface that lies at a finite distance from the squirmer. This

has important implications for the induced transport of nutrients or other tracers and

the hydrodynamic interactions and collective dynamics of multiple swimmers [29, 23].

Finally, we add a cautionary note that our modelling of swimming micro-organisms as
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cylinders with prescribed surface motions is somewhat restrictive, limiting the quanti-

tative application of our results. In particular, we neglect all effects of viscoplasticity

on the imposed surface velocity pattern, and a real concern is that the cilia respon-

sible for driving these motions may themselves clog up under the action of the yield

stress. However, the qualitative results of our work constitute a first step towards

understanding the effect of a yield stress on swimming micro-organisms and their

collective dynamics.
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Chapter 3

Linearly forced fluid flow on a

rotating sphere

The contents of this chapter have been published as the article: R. Supekar, V.

Heinonen, K. J. Burns, & J. Dunkel, Linearly forced fluid flow on a rotating sphere,

J. Fluid Mech., 892:A30, 2020 [91].

3.1 Introduction

Turbulence is often described as the last unsolved problem in classical physics [92].

In recent years, considerable progress has been made in the modelling of stationary

turbulence, which requires a driving force to continually balance kinetic energy losses

due to viscous dissipation [93]. Theoretical and computational studies of turbulence

phenomena typically focus on external driving provided by a random forcing [94],

boundary forcing [95] or Kolmogorov forcing [96]. A fundamentally different class of

internal driving mechanisms, less widely explored in the turbulence literature so far, is

based on linear instabilities [97, 98, 99, 100, 18, 101, 102]. The profound mathemati-

cal differences between external and internal driving were emphasized by Arnold [103]

in the context of classical dynamical systems described by ordinary differential equa-

tions. Specifically, he contrasted the externally forced Kolmogorov hydrodynamic

system with the internally forced Lorenz system, the latter providing a simplified
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model of atmospheric convection [104]. From the broader fluid-mechanical perspec-

tive, Arnold’s analysis raises the interesting question of how internally driven flows

behave in rotating frames like the atmospheres of planets or stars. Models for such

internally driven flows have been recently investigated in the context of ‘active tur-

bulence’ [17, 18]. In this chapter, we ask: can these phenomenological models be

utilized to minimally model pattern-forming flows on a rotating sphere?

To answer the above question, we investigate an analytically tractable minimal

model for linearly forced quasi-2D flow on a rotating sphere. The underlying general-

ized Navier-Stokes (GNS) equations describe internally driven flows through higher-

order hyperviscosity-like terms in the stress tensor [105, 18], and the associated GNS

triad dynamics is structurally similar to the Lorenz system [101]. GNS-type mod-

els have been studied previously as effective phenomenological descriptions for seis-

mic wave propagation [105, 98], magnetohydrodynamic flows [106] and active flu-

ids [43, 18, 19]. A key difference compared with scale-free classical turbulence is

that GNS flows can exhibit characteristic spatial and temporal scales that reflect the

internal forcing mechanisms.

Remarkably, the minimal GNS model studied below permits nontrivial analyt-

ical solutions. Exact stationary solutions reported previously include 3D Beltrami

flows [18] and 2D vortex lattices [43]. Furthermore, Mickelin et al. [66] recently ex-

plored GNS flows on 2D curved surfaces and constructed stationary solutions for the

case of a non-rotating sphere. Here, we generalize their work by deriving exact time-

dependent solutions for GNS flows on rotating spheres, and by comparing them with

direct numerical simulations (figure 3-1). We shall see that these exact GNS solutions

correspond to Rossby waves propagating along alternating zonal jets, qualitatively

similar to the large-scale flow patterns seen in planetary atmospheres [107, 108]. This

highlights how such minimal models originally proposed for active fluids can provide

insights into generic pattern forming systems at different scales.

Our study complements recent work which showed that non-equilibrium approaches

can provide analytical insights into the dynamics of planetary flows [45] and atmo-

spheres [44]. In view of the recent successful application of phenomenological GNS
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models to active fluids [17, 18], the results below can also help advance the under-

standing of active matter propagation on curved surfaces [109, 110, 111, 112] and in

rotating frames [113].

3.2 Generalized Navier-Stokes model for linearly driven

flow

After briefly reviewing the GNS equations in § 3.2.1, we derive the corresponding

vorticity-stream function formulation on a rotating sphere in § 3.2.2.

3.2.1 Planar geometry

The GNS equations for an incompressible fluid velocity field 𝑣(𝑥, 𝑡) with pressure

field 𝑝(𝑥, 𝑡) read [18, 43]

∇ · 𝑣 = 0, (3.1a)

𝜕𝑡𝑣 + (𝑣 ·∇)𝑣 = −∇𝑝+ ∇ · 𝜎, (3.1b)

where the higher-order stress tensor

𝜎 =
(︀
Γ0 − Γ2∇2 + Γ4∇4

)︀ [︀
∇𝑣 + (∇𝑣)⊤

]︀
(3.1c)

accounts for both viscous damping and linear internal forcing. Transforming to

Fourier space, the divergence of the stress tensor gives the dispersion relation

𝜉(𝑘) = −𝑘2(Γ0 + Γ2𝑘
2 + Γ4𝑘

4) (3.2)

where 𝑘 is the magnitude of the wave vector 𝑘. Fixing hyper-viscosity parameters

Γ0 > 0, Γ4 > 0 and Γ2 < −2
√

Γ0Γ4, the growth rate 𝜉(𝑘) is positive between the

two real roots 𝑘− and 𝑘+. Hence, Fourier modes in the active band 𝑘 ∈ (𝑘−, 𝑘+) are

linearly unstable, corresponding to active energy injection into the fluid. The distance
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Figure 3-1: Statistically stationary states of the normalized vorticity 𝜁𝜏 from simulations (a–i) for
𝜅Λ = 1 become more zonal (or banded) as the rotation rate Ω𝜏 increases. At the highest rotation rate
Ω𝜏 = 500, the width of the alternating zonal jets is determined by the parameter 𝑅/Λ that represents
the ratio of the radius of the sphere and the diameter of the vortices forced by the GNS dynamics. The
main characteristics of these flow patterns at high rotation rate are captured by spherical harmonics
𝑌 0
ℓ (𝜃, 𝜑) that solve the dynamical equations. Matching the length scale 𝑅/Λ gives ℓ = 6 (j), ℓ = 11

(k), and ℓ = 21 (l) for 𝑅/Λ = 2, 4, and 8, respectively.

80



between the neutral modes 𝑘± defines the active bandwidth 𝜅 = 𝑘+ − 𝑘−.

Unstable bands are a universal feature of stress tensors exhibiting positive disper-

sion 𝜉(𝑘) > 0 for some 𝑘. Polynomial GNS models of the type (3.1) were first studied

in the context of seismic wave propagation [105, 98] and can also capture essential

statistical properties of dense microbial suspensions [17, 18]. Since non-polynomial

dispersion relation produce qualitatively similar flows [101, 102], we focus here on

stress tensors of the generic polynomial form (3.1c).

Exact steady-state solutions of (3.1), corresponding to ‘zero-viscosity’ states, can

be written as superpositions of modes 𝑘 with |𝑘| = 𝑘+ or |𝑘| = 𝑘− [18]. Simu-

lations of (3.1) with random initial conditions converge to statistically stationary

states with highly dynamical vortical patterns that have a characteristic diameter

∼ Λ = 𝜋/𝑘*, where 𝑘* is the most unstable wavenumber, corresponding to the maxi-

mum of 𝜉(𝑘) [101, 114]. Inverse energy transport in 2D can bias the dominant vortex

length scale towards larger values ∼ 𝜋/𝑘− [19].

3.2.2 On a rotating sphere

We generalize planar 2D GNS dynamics (3.1) to a sphere with radius 𝑅 rotating at

rate Ω. To this end, we adopt a co-rotating spherical coordinate system (𝜃, 𝜑) where

𝜃 is the co-latitude and 𝜑 is the longitude. Following Mickelin et al. [66], we find the

rotating GNS equations in vorticity-stream function form

∇2𝜓 = −𝜁, (3.3a)

𝜕𝑡𝜁 + 𝐽(𝜓, 𝜁) = 𝐹 (∇2 + 4𝐾)(∇2 + 2𝐾)𝜁 + 2Ω𝐾𝜕𝜑𝜓, (3.3b)

where 𝜁 is the vorticity in the rotating frame, and 𝐾 = 1/𝑅2 denotes the Gaussian

curvature of the sphere. The active stress operator 𝐹 has the polynomial form

𝐹 (𝑥) = Γ0 − Γ2𝑥+ Γ4𝑥
2. (3.4)

The Laplacian ∇2 on the sphere is defined by ∇2 = 𝐾
(︀
cot 𝜃𝜕𝜃 + 𝜕2𝜃 + (sin 𝜃)−2𝜕2𝜑

)︀
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Figure 3-2: The growth rate Ξ of spherical harmonic modes 𝑌 𝑚
ℓ (𝜃, 𝜑) in (3.5) plot-

ted as a function of the wavenumber ℓ. The parameters used to make this plot are
((𝜏/𝑅2)Γ0, (𝜏/𝑅

4)Γ2, (𝜏/𝑅
6)Γ4) ≃ (1.43× 10−2,−4.86× 10−5, 3.72× 10−8) which cor-

respond to 𝑅/Λ = 8 and 𝜅Λ = 1. The grey region indicates the active bandwidth
where Ξ > 0 and energy is injected. Λ is the diameter of the vortices forced by
the mode with the maximum growth rate 1/𝜏 , and 𝜅 is the active bandwidth i.e.
𝜅 = (ℓ+ − ℓ−)/𝑅 where Ξ(ℓ±) = 0.

and 𝐽(𝜓, 𝜁) = 𝐾(sin 𝜃)−1 (𝜕𝜑𝜓𝜕𝜃𝜁 − 𝜕𝜃𝜓𝜕𝜑𝜁) is the determinant of the Jacobian of the

mapping (𝑅𝜑 sin 𝜃, 𝑅𝜃) ↦→ (𝜓, 𝜁) from the tangent space of the sphere to the vectors

(𝜓, 𝜁). The velocity components can be recovered from the stream function 𝜓 by

(𝑣𝜑, 𝑣𝜃) = (−𝜕𝜃𝜓/𝑅, 𝜕𝜑𝜓/𝑅 sin 𝜃) . In the non-rotating limit Ω → 0, (3.3b) reduces to

the model studied by Mickelin et al. [66]. We note that (3.3b) is an internally forced

extension of the unforced barotropic vorticity equation 𝜕𝑡𝜁 + 𝐽(𝜓, 𝜁) = 2Ω𝐾𝜕𝜑𝜓

which has been widely studied in earth science since the pioneering work of Charney

et al. [115]. Below we will show that the GNS model (3.3b) is analytically tractable,

permitting exact traveling wave solutions that are close to the complex flow states

observed in simulations.

Dimensionless parameters

We assess the linear behaviour of (3.3b) using spherical harmonics 𝑌 𝑚
ℓ (𝜃, 𝜑), the

eigenfunctions of the Laplacian operator on the sphere. With 𝛿 = 𝐾(ℓ(ℓ + 1) − 4),

the linear growth rate of a spherical harmonic mode due to 𝐹 is

Ξ(ℓ) = − (𝛿 + 2𝐾)𝐹 (−𝛿) = − (𝛿 + 2𝐾)
(︀
Γ0 + Γ2𝛿 + Γ4𝛿

2
)︀

(3.5)
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which is the spherical analog of (3.2). Using this relation, characteristic length and

time scales, Λ and 𝜏 , for vortices forced by the GNS dynamics, along with the band-

width of the forcing 𝜅, can be expressed in terms of Γ0,Γ2,Γ4 and 𝑅 (figure 3-2 and

appendix B.1). We use these scales to define the essential dimensionless parameters:

𝑅/Λ is the ratio between the radius of the sphere and the characteristic vortex scale,

𝜅Λ compares the forcing bandwidth to the characteristic vortex scale, and Ω𝜏 is di-

mensionless rotation rate. We note that since Ξ(ℓ = 1) = 0, the GNS dynamics do

not force the ℓ = 1 mode which ensures that the total angular momentum is con-

served (see appendix B.2). Finally, we define the Rossby number in terms of the

characteristic flow speed 𝒰 = Λ/𝜏 and the dominant length scale ℒ = Λ as

𝑅𝑜 =
𝒰

Ωℒ =
1

Ω𝜏
. (3.6)

𝛽–plane equations

When the vortical patterns are much smaller than the radius of the sphere (𝑅/Λ ≫ 1),

one can linearize around a reference co-latitude 𝜃0 to produce a local model. We define

metric coordinates in the directions of increasing 𝜑 and decreasing 𝜃, respectively, by

𝑥 = 𝑅 sin(𝜃0)𝜑 and 𝑦 = 𝑅(𝜃0 − 𝜃). In these coordinates the dynamical equations are

∇2
𝑐𝜓 = −𝜁, (3.7a)

𝜕𝑡𝜁 + 𝐽𝑐(𝜓, 𝜁) = ∇2
𝑐𝐹 (∇2

𝑐)𝜁 + 𝛽𝜕𝑥𝜓, (3.7b)

where 𝐽𝑐(𝜓, 𝜁) = 𝜕𝑦𝜓𝜕𝑥𝜁 − 𝜕𝑥𝜓𝜕𝑦𝜁 is the Cartesian Jacobian determinant, ∇2
𝑐 is the

Cartesian Laplacian and the namesake 𝛽 parameter is given by 𝛽 = 2Ω sin 𝜃0/𝑅. The

𝛽−plane equations preserve the effect of a varying Coriolis parameter 2Ω cos 𝜃 while

simplifying the spatial operators. Rotational effects are accounted for by the term

proportional to 𝛽.
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Figure 3-3: Data from steady-state solutions at 𝑡/𝜏 = 15 for the highest rotation rate Ω𝜏 = 500. The
rows correspond to 𝑅/Λ = 2 (a–d), 4 (e–h) and 8 (i–l). Panels (a, e, i) show Mercator projections of
the dimensionless vorticity 𝜁𝜏 . Panels (b, f, j) show the zonal-mean azimuthal velocities ⟨𝑣𝜑⟩𝜑/(𝑅/𝜏).
Panels (c, g, k) show spherical harmonic decomposition of dimensionless vorticity 𝜁𝜏 with marker size
indicating amplitude and color indicating phase. All plots indicate the existence of dominant zonal
jets with 𝑚 = 0 and ℓ’s within the active band indicated in grey. These modes are close to the exact
solutions in figure 3-1(j–l). Panels (d, h, l) show time-variation of the energy of all the modes (black),
active 𝑚 = 0 modes (red), and all other modes (green); the energy contained in the active 𝑚 = 0
accounts for most of the total energy in the statistically stationary state.
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Characteristic length and time scales

The turbulent outer layers of rotating stars and planets ubiquitously contain east-

west (zonal) jets of various scales and strengths. Determining physical processes that

generate and maintain these jets is an important problem in planetary science. A

variety of theories have arisen describing jet formation, particularly on the 𝛽-plane,

including the arrest of the inverse cascade in rotating turbulence by nonlinear Rossby

waves [116, 117], and as a bifurcation in the statistical dynamics of the zonal flow as

a function of the intensity of background homogeneous turbulence [118, 119]. These

theories predict that jet formation may depend on a variety of length and timescales,

such as the Rhines scale 𝐿𝑅 =
√︀

𝒰/𝛽, the scale at which small-scale forcing injecting

energy at a rate 𝜖 is effected by rotation 𝐿𝜖 = (𝜖/𝛽3)1/5 [120], and the growth rate

of unstable perturbations to the zonal flow in statistical models [121]. The GNS

model investigated here provides a simplified setting for examining the dynamics of

jets by parameterizing the jet-formation physics, rather than attempting to resolve

the details of the underlying formation processes. If one is interested in matching

the effective GNS parameters to specific length and velocity scales of more detailed

models, then guidance can be drawn from the observation that typical zonal jets

in the GNS model have width ∼ Λ and r.m.s. velocity ∼ Λ
√︀

Ω/𝜏 in the rotation

dominated regime Ω𝜏 > 1.

3.3 Exact time-dependent solutions

Exact solutions can be constructed on the sphere as well as on the local 𝛽−plane.

Although not stable, these solutions will provide an intuitive understanding of the

numerical results in § 3.4, similar to the role of exact coherent structures [122, 123]

in classical turbulence.
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3.3.1 Global solutions

Exact time-dependent solutions to (3.3b) can be constructed as superpositions of

normal spherical harmonic modes 𝑌 𝑚
ℓ (𝜃, 𝜑) as

[︂
𝜓(𝜃, 𝜑, 𝑡), 𝜁(𝜃, 𝜑, 𝑡)

]︂
=

[︂
1, ℓ±(ℓ± + 1)

]︂(︂
𝜓𝑗(𝜃) + 𝜓𝑤(𝜃, 𝜑, 𝑡)

)︂
, (3.8)

with

𝜓𝑗(𝜃) = 𝒜0𝑌
0
ℓ±(𝜃), 𝜓𝑤(𝜃, 𝜑, 𝑡) = Re

[︃
ℓ±∑︁

𝑚=1

𝒜𝑚𝑌
𝑚
ℓ± (𝜃, 𝜑) exp(−i𝜎𝑚𝑡)

]︃
, (3.9)

where 𝒜𝑚 for 𝑚 = 0, 1, ... are constants, ℓ± are the roots of

𝐹
(︀
−ℓ±(ℓ± + 1) + 4

)︀
= 0 (3.10)

and 𝜎𝑚 satisfies the dispersion relation

𝑐𝜑𝑝 =
𝜎𝑚
𝑚

=
−2Ω

ℓ±(ℓ± + 1)
. (3.11)

These solutions to (3.3b) are possible because the Jacobian determinant 𝐽 vanishes

if the stream function is a superposition of spherical harmonics 𝑌 𝑚
ℓ with fixed ℓ. We

choose ℓ to be one of the roots of the polynomial 𝐹 given in equation (3.10). Equation

(3.11) describes the dispersion of normal-mode Rossby-Haurwitz waves [124, 125,

126]. These are well-known solutions of the barotropic vorticity equation [127] and

propagate in the direction opposite to the sphere’s rotation with phase speed 𝑐𝜑𝑝 .

Overall, the exact solutions in (3.8) are a combination of time-independent zonal jets

(𝜓𝑗) and time-varying Rossby-Haurwitz waves (𝜓𝑤). The time-independent zonal

jets are spherical harmonics 𝑌 0
ℓ (𝜃) which consist of alternating crests and troughs. A

selection of such modes corresponding to different ℓ’s are shown in figure 3-1(j–l).
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3.3.2 𝛽−plane solutions

Similar to the procedure on the full sphere, exact solutions to (3.7b) can be con-

structed by considering superpositions of Fourier modes with wave vectors 𝑘 that

correspond to the neutral modes of the pattern forming operator. Hence, the exact

solutions are

[︂
𝜓(𝑥, 𝑦, 𝑡), 𝜁(𝑥, 𝑦, 𝑡)

]︂
=

[︂
1, 𝑘2±

]︂(︂
𝜓𝑗(𝑦) + 𝜓𝑤(𝑥, 𝑦, 𝑡)

)︂
, (3.12)

with

𝜓𝑗(𝑦) = Re [𝒜0 exp(i𝑘±𝑦)] , 𝜓𝑤(𝑥, 𝑦, 𝑡) = Re

⎡⎣ ∑︁
|𝑘|=𝑘±

𝒜𝑘 exp(i(𝑘 · 𝑥− 𝜎𝑘𝑡))

⎤⎦ , (3.13)

where 𝒜𝑘 are constants, 𝑘± are the positive roots of 𝐹 (−𝑘2±) = 0, and 𝜎𝑘 satisfies the

Rossby-wave dispersion relation [128]

𝑐𝑥𝑝 =
𝜎𝑘
𝑘𝑥

=
−𝛽𝑘𝑥
|𝑘|2 . (3.14)

Here again, solutions are a combination of a time-independent zonal flow (𝜓𝑗(𝑦)) and

time-varying Rossby waves (𝜓𝑤(𝑥, 𝑦, 𝑡)). For the parameters at which the 𝛽−plane

approximation holds, the expression for the phase speed (3.14) provides an explicit

dependence on the co-latitude 𝜃 through the parameter 𝛽 = 2Ω sin 𝜃0/𝑅. The dynam-

ics at the poles are similar to those on a non-rotating flat plane and the non-inertial

effects matter the most at the equator.

3.4 Simulations

Direct numerical simulations of (3.3b) were performed using a spectral code based on

the open-source Dedalus framework [129]. The code uses a pseudo-spectral method

with a basis of spin-weighted spherical harmonics [130, 131]; see appendix of Ref. [66].

A spectral expansion with a cut-off ℓ𝑚𝑎𝑥 = 256 suffices to obtain converged solutions.
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Figure 3-6: (a–d) Time-space diagrams of the deviation of vorticity, 𝜁 − ⟨𝜁⟩, where ⟨·⟩ is the average
over time and space, indicate that the phase speed of the westward propagating Rossby waves in the
local 𝛽−plane changes with latitude. (e–l) Logarithm of the power spectral density, 𝑆 = |𝜏𝜁(𝑘𝑥, 𝜎)|2,
where 𝜁 is the discrete Fourier transform, at different northern (e–h) and southern (i–l) latitudes. The
grey regions indicate the forcing bandwidth with 𝑘− < |𝑘𝑥| < 𝑘+ justifying the rapid decay of the
power spectral density for |𝑘𝑥| > 𝑘+. The white lines in each panel show the analytical dispersion
relation from (3.14) with |𝑘| = 𝑘+ and |𝑘| = 𝑘−; the one with the steeper slope corresponds to 𝑘−.
These predictions capture the variance of power spectral density.
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The simulations are initialized with a random stream function and evolved from time

𝑡/𝜏 = 0 to 𝑡/𝜏 = 50. In all simulations, we vary the parameters 𝑅/Λ and Ω𝜏 for fixed

dimensionless bandwidth 𝜅Λ = 1. Narrow-band driving with 𝜅Λ ≪ 1 leads to ‘burst’

dynamics [66] whereas broad-band driving 𝜅Λ ≫ 1 leads to classical turbulence [93].

The simulations settle onto statistically stationary flow states after initial relaxation

periods during which the active stresses continuously inject energy until the forcing

and dissipation balance. The analysis below focuses on the statistically stationary

states.

Figures 3-1(a–i) show snapshots of the dimensionless relative vorticity 𝜁𝜏 for a

range of 𝑅/Λ and Ω𝜏 at 𝑡/𝜏 = 15. In the non-rotating case Ω𝜏 = 0, we attain

solutions akin to those obtained by Mickelin et al. [66]. When the dimensionless

rotation rate Ω𝜏 is increased, the flow becomes zonal, that is, the 𝜑−variation in

the vorticity field decreases. At the highest rotation rate Ω𝜏 = 500, the vorticity

field contains alternating bands of high and low vorticity with a characteristic width.

For comparison, we plot the steady state solutions 𝑌 0
⌈ℓ−⌉(𝜃), where ⌈·⌉ is the ceiling

function, in figures 3-1 (j–l). This corresponds to the smallest ℓ inside the active band.

The formation of zonal flows in our model is consistent with the view [132, 133] that

such flow structures can be described within a generic pattern formation framework.

To better visualize the banded solutions for high rotation rates, we plot Mercator

projections of the vorticity in figure 3-3 (panels a, e, i). The banded nature of the

vorticity is also reflected in the alternating structure of the mean azimuthal veloc-

ity ⟨𝑣𝜑⟩𝜑 (panels b, f, j). The predominant scales in the flow field can be measured

using the spherical harmonic decomposition of the relative vorticity. Since 𝜁𝜏 is a

real field, we plot only the coefficients with positive 𝑚 in panels 𝑐, 𝑔, 𝑘. The largest

modes have 𝑚 = 0 with ℓ values in the active band of the GNS model (indicated in

grey). Panels (d–l) of figure 3-3 show the total energy and the energy contained in

the active 𝑚 = 0 modes as a function of time, calculated from the spherical harmonic

coefficients as

𝐸(𝑡)

𝑅2/𝜏 2
=
𝜏 2

𝑅2

∑︁
𝑚,ℓ ̸=0

𝐸𝑚,ℓ(𝑡) =
1

2

∑︁
𝑚,ℓ ̸=0

|𝜏𝜁𝑚,ℓ(𝑡)|2
𝑅2ℓ(ℓ+ 1)

. (3.15)
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After the initial relaxation phase, when the energy injection balances the energy

dissipation, the total energy in the system fluctuates around a statistical mean. The

active 𝑚 = 0 modes carry most of the total energy, implying that the bulk dynamics

are dominated by these few modes. This also explains the bandedness of the flow

patterns since spherical harmonics with 𝑚 = 0 do not vary with the azimuthal angle

𝜑; see figure 3-1 (panels j–l). Time-averaged energy spectra of the statistically steady

states are plotted in figure 3-4. The energy shows a clear peak within the active

bandwidth further suggesting that the active modes carry most of the total energy.

Strikingly, the statistically stationary states exhibit Rossby waves. For high ro-

tation rates, the Rossby number 𝑅𝑜 defined by (3.6) is ≪ 1. Thus, we can directly

compare the linear phase speed given by (3.11) with the slopes of the linear least

squares fits to the phase evolution of the coefficients of vorticity 𝜁𝑚,ℓ(𝑡) from the sim-

ulations. The normalized phase speed of the modes for different values of 𝑅/Λ and

Ω𝜏 = 500 is shown in figure 3-5. The plotted modes have ℓ in the active bandwidth,

corresponding to the grey regions in figure 3-3 (panels c, g, k). The phase speed of the

modes from the simulations are close to 1 when normalized by the analytical predic-

tion (figure 3-5), implying that the linearized theory captures the main characteristics

of the nonlinear dynamics.

We also analyze the phase speed of the waves as a function of latitude. According

to the dispersion relation in (3.14), the Rossby-wave phase speed 𝑐𝑥𝑝 depends on the

co-latitude 𝜃0 through 𝛽 = 2Ω sin 𝜃0/𝑅. To check this prediction, we examine the

local dynamics at a number of discrete latitudes (𝜋/2 − 𝜃0) shown in panels (a–d)

of figure 3-6 for 𝑅/Λ = 8 and Ω𝜏 = 500 (the 𝛽−plane approximation is valid for

these parameters). We show the 2D discrete Fourier transform in time and spatial

coordinate 𝑥 = 𝑅(sin 𝜃0)𝜑 in panels (e–l) for the same northern and southern latitudes.

The unstable modes lie within the forcing bandwidth or when 𝑘− < |𝑘| < 𝑘+. Hence,

we plot the expected wave dispersion (3.14) making the approximations |𝑘| ≃ 𝑘+ and

|𝑘| ≃ 𝑘−. This produces two analytical curves for 𝜎(𝑘𝑥) which are linear in 𝑘𝑥 for 𝑘𝑥 <

𝑘+. These curves capture the spread of the spectral power in the nonlinear dynamics

at every latitude; see the white lines in figures 3-6(e–l). We subsequently infer that the
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nonlinear, statistically stationary states contain modes with phase speeds matching

those of linear 𝛽−plane Rossby waves.

3.5 Conclusions

This chapter has addressed the broader question of how internally driven phenomeno-

logical models can be utilized to minimally model other chaotic pattern-forming sys-

tems. Specifically, motivated by pattern formation in rotating planetary atmospheres,

we have presented analytical and numerical solutions of generalized Navier-Stokes

(GNS) equations on a 2D rotating sphere. This phenomenological model general-

izes the widely studied barotropic vorticity equation by adding an internal forcing

that injects energy within a fixed spectral bandwidth. We derived a family of ex-

act time-dependent solutions to the GNS equations on the rotating sphere as well

as in the local 𝛽−plane. These solutions correspond to a superposition of zonal jets

and westward-propagating Rossby waves. Simulations at high rotation rates confirm

that the statistically stationary states are close to these exact solutions. We further

showed that the phase speeds of waves in the simulations agree with those predicted

for linear Rossby waves.

Given the generic nature of the GNS approach, it is possible to modify the func-

tional form of the spectral forcing to incorporate more than one dominant length

scale. Our results suggest that the GNS framework can serve as a useful minimal

model for providing analytical insight into complex flows on rotating spheres, such

as planetary atmospheres. Additionally, they also indicate that phenomenological

modeling of collective dynamics in active fluids can help enhance our understanding

of chaotic pattern-forming systems in general.
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Chapter 4

Learning hydrodynamic equations

for active matter from

particle simulations and experiments

The contents of this chapter are available in the preprint: R. Supekar, B. Song, A.

Hastewell, A. Mietke, and J. Dunkel, arXiv :2101.06568, 2021 [134].

4.1 Introduction

Natural and engineered active matter, from cells [135], tissues [136] and organ-

isms [137] to self-propelled particle suspensions [9, 6] and autonomous robots [15,

138, 139], exhibits complex dynamics across a wide range of length and time scales.

Predicting the collective self-organization and emergent behaviors of such systems

requires extensions of traditional theories that go beyond conventional physical de-

scriptions of non-living matter [40, 11, 12]. Due to the inherent complexity of active

matter interactions in multi-cellular communities [46, 140] and organisms [47], or even

non-equilibrium chemical [141] or colloidal [9, 6, 142] systems, it becomes increasingly

difficult and inefficient for humans to formulate and quantitatively validate contin-

uum theories from first principles. A key question is therefore whether one can utilize

computing machines [49] to identify interpretable systems of equations that elucidate
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the mechanisms underlying collective active matter dynamics.

Enabled by recent major advances in microscopic imaging [143, 144, 46, 47] and

agent-based computational modeling [48], active matter systems can now be observed

and analyzed at unprecedented spatiotemporal [145, 146, 147] resolution. To infer in-

terpretable predictive theories, the high-dimensional data recorded in experiments

or simulations have to be compressed and translated into low-dimensional models.

Such learned models must faithfully capture the macroscale dynamics of the rele-

vant collective properties. Macroscale properties can be efficiently encoded through

hydrodynamic variables, continuous fields that are linked to the symmetries and con-

servation laws of the underlying microscopic system [11, 12]. Although much theo-

retical progress has been made in the field of dynamical systems learning over the

last two decades [148, 58, 149, 59, 56, 57, 65], the inference of hydrodynamic mod-

els from particle data has remained largely unsuccessful in practice, not least due

to severe complications arising from measurement noise, inherent fluctuations and

self-organized scale-selection in active systems. Yet, extrapolating the current exper-

imental revolution [143, 144, 9, 6, 46, 140], data-driven equation learning will become

increasingly more important as simultaneous observations of physical, biological, and

chemical properties of individual cells and other active units will become available in

the near future [150, 151].

Learning algorithms for ordinary differential equations (ODEs) and partial differ-

ential equations (PDEs) have been proposed and demonstrated based on least-squares

fitting [148, 58], symbolic regression [149, 59], and sparse regression [56, 57] combined

with weak formulations [62, 63], artificial neural networks [60, 61, 54], and stability

selection [64, 65]. These groundbreaking studies, however, focused primarily on data

that describes a priori known continuum models, and recent coarse-graining applica-

tions have remained limited to ODEs [152] or one-dimensional PDEs [153, 154]. By

contrast, it is still an open challenge to infer higher-dimensional hydrodynamic PDE

models directly from microscopic active matter simulations or experiments.

In this chapter, we present a comprehensive learning framework that takes mi-

croscopic particle data as input and generates sparse interpretable predictive hy-
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Figure 4-1: Learning hydrodynamic models from particle simulations and experiments. (a) Inputs
are time-series data for particle positions x𝑖(𝑡), particle orientations p𝑖(𝑡) = (cos 𝜃𝑖, sin 𝜃𝑖)

⊤, etc.,
measured in simulations or experiments with microscale resolution (§ 4.2.1). (b) Spatial kernel coarse-
graining of the discrete microscopic variables provides continuous hydrodynamic fields, such as the
density 𝜌(𝑡,x) or the polarization density p(𝑡,x) (§ 4.2.2). (c) Coarse-grained fields are sampled on
a spatiotemporal grid and projected onto suitable spectral basis functions. Systematic spectral filter-
ing (compression) ensures smoothly interpolated hydrodynamic fields, enabling efficient and accurate
computation of spatiotemporal derivatives (§ 4.2.3). (d) Using these derivatives, a library of candi-
date terms 𝐶𝑙(𝜌,p) and 𝐶𝑙(𝜌,p) consistent with prior knowledge about conservation laws and broken
symmetries is constructed. A sparse regression algorithm determines subsets of relevant phenomeno-
logical coefficients 𝑎𝑙 and 𝑏𝑙 (§ 4.2.4). The resulting hydrodynamic models are sparse and interpretable,
and their predictions can be directly validated against analytic coarse-graining results (§ 4.2.5) or ex-
periments (§ 4.3). Bottom: Snapshots illustrating the workflow for microscopic data generated from
simulations of chiral active Brownian particles [equation (4.1)].
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drodynamic models as output (figure 4-1). We demonstrate its practical potential

in applications to active particle data from simulations and recent experiments [9].

In both cases, we find that the learned hydrodynamic models predict the emergent

collective dynamics not only qualitatively but also quantitatively. Conceptually, this

advance is made possible by leveraging spectral basis representations [155] for system-

atic denoising and robust numerical differentiation, and by explicitly incorporating

physical constraints into the learning framework. Our analysis achieves the goal of

this thesis to show how insights from analytic coarse-graining calculations and prior

knowledge of conservation laws and broken symmetries can enhance the robustness

of automated equation discovery from microscopic data.

4.2 Learning framework

Our model learning approach combines recent advances in sparse PDE recovery [57,

64] with spectral filtering and compression [156, 157, 129]. We first demonstrate

the key steps of the general framework (figure 4-1) for an experimentally motivated

chiral active particle model, for which the hydrodynamic continuum equations were

not known previously. Later on, we will apply the same methodology to infer a

quantitative hydrodynamic model directly from video data recorded in recent colloidal

micro-roller experiments [9] (§ 4.3).

4.2.1 Active particle simulations 1

To generate challenging test data for the learning algorithm, we simulated a 2D system

of interacting self-propelled chiral particles [158, 37, 38, 159, 160]. Microscopic models

of this type are known to capture essential aspects of the experimentally observed self-

organization of protein filaments [161, 162], bacterial swarms [145, 163, 39] and cell

monolayers [164]. In the simulations, a particle 𝑖 with orientation p𝑖 = (cos 𝜃𝑖, sin 𝜃𝑖)
⊤

1These simulations were performed by Boya Song, Department of Mathematics, MIT.
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moved and changed orientation according to the Brownian dynamics

𝑑x𝑖

𝑑𝑡
= 𝑣𝑖p𝑖, (4.1a)

𝑑𝜃𝑖
𝑑𝑡

= Ω𝑖 + 𝑔
∑︀
𝑗∈𝒩𝑖

sin(𝜃𝑗 − 𝜃𝑖) +
√︀

2𝐷𝑟𝜂𝑖, (4.1b)

where 𝜂𝑖(𝑡) denotes orientational Gaussian white noise, with ⟨𝜂𝑖(𝑡)𝜂𝑗(𝑡′)⟩ = 𝛿𝑖𝑗𝛿(𝑡− 𝑡′)

and zero mean, modulated by the rotational diffusion constant 𝐷𝑟. The parameter

𝑔 > 0 determines the alignment interaction strength between particles 𝑖 and 𝑗 within a

neighborhood 𝒩𝑖 of radius 𝑅. The self-propulsion speed 𝑣𝑖 ≥ 0 and orientational rota-

tion frequency Ω𝑖 ≥ 0 were drawn from a joint distribution 𝑝(𝑣𝑖,Ω𝑖) (appendix C.1.1).

This heuristic distribution was chosen such that long-lived vortex states, similar to

those observed in swimming sperm cell suspensions [4], formed spontaneously from ar-

bitrary random initial conditions (figure 4-2a). Emerging vortices are left-handed for

Ω𝑖 ≥ 0, and their typical size is ∼ ⟨𝑣𝑖⟩𝑝/⟨Ω𝑖⟩𝑝, where ⟨·⟩𝑝 denotes an average over the

parameter distribution 𝑝(𝑣𝑖,Ω𝑖). We simulated equation (4.1) in non-dimensionalized

form, choosing the interaction radius 𝑅 as reference length and 𝑅/⟨𝑣𝑖⟩𝑝 as time scale.

Accordingly, we set 𝑅 = 1 and ⟨𝑣𝑖⟩𝑝 = 1 from now on. Simulations were performed

for 𝑁 = 12, 000 particles on a periodic domain of size 100 × 100 (figure 4-2a).

From a learning perspective, this model poses many of the typical challenges that

one encounters when attempting to infer hydrodynamic equations from active matter

experiments: spontaneous symmetry breaking and meso-scale pattern formation, mi-

croscopic parameter variability, noisy dynamics, anisotropic interactions, and so on.

Indeed, similar to many experimental systems, it is not even clear a priori whether

or not equations (4.1) permit a quantitative description in terms of a sparse hydro-

dynamic continuum model.

4.2.2 Hydrodynamic fields

Given particle-resolved data, hydrodynamic fields are obtained by coarse-graining. A

popular coarse-graining approach is based on convolution kernels [165, 166], weight
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functions that translate discrete fine-grained particle densities into continuous fields,

analogous to the point spread function of a microscope. For example, given the

particle positions x𝑖(𝑡) and orientations p𝑖(𝑡), an associated particle number density

field 𝜌(𝑡,x) and polarization density field p(𝑡,x) can be defined by

𝜌(𝑡,x) =
∑︀
𝑖

𝐾[x− x𝑖(𝑡)], (4.2a)

p(𝑡,x) =
∑︀
𝑖

𝐾[x− x𝑖(𝑡)]p𝑖(𝑡). (4.2b)

The symmetric kernel 𝐾(x) is centered at x = 0 and normalized,
∫︀
𝑑2x 𝐾(x) = 1, so

that the total number of particles is recovered from
∫︀
𝑑2x 𝜌(𝑡,x) = 𝑁 . Equations (4.2)

generalize to higher tensorial density fields in a straightforward manner, and can be

readily adapted to accommodate different boundary conditions (appendix C.1.2).

We found that, in the context of hydrodynamic model learning, the coarse-graining

with a Gaussian kernel 𝐾(x) ∝ exp[−|x|2/(2𝜎2)] in (4.2) presents a useful prepro-

cessing step that simplifies the use of fast transforms at later stages. In practice, the

coarse-graining scale 𝜎 has to be chosen larger than the particle’s mean-free path,

but small enough to resolve the relevant collective structures. For the microscopic

test data from equations (4.1), 𝜎 = 5 provides a sufficient resolution of the emerging

vortex patterns (figure 4-2a, bottom panel).

4.2.3 Spatiotemporal representation and differentiation

A central challenge in PDE learning is the computation of spatial and temporal

derivatives of the coarse-grained fields. Our framework exploits that hydrodynamic

models aim to capture the long-wavelength dynamics of the slow collective modes [11].

This fact allows us to project the coarse-grained fields on suitable basis functions

that additionally enable sparse representations (high compression), fast transforms
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Figure 4-2: Learning mass conservation dynamics. (a) Top: Time evolution of positions and orientations of 12,000
particles following the dynamics in equations (4.1). Bottom: Coarse-grained density 𝜌 (color code) and polarization
field p (arrows). Starting from random initial conditions (𝑡 = 0), a long-lived vortex pattern with well-defined handedness
emerges (𝑡 = 1250). Training data were randomly sampled from the time window 𝑡 ∈ [40, 400], contained within the
gray box. Domain size: 100 × 100. (b) Slices through the power spectrum 𝑆𝑥;𝑛,q = |e𝑥 · p̂𝑛,q|2 for different values of
the Chebyshev polynomial order 𝑛 ∈ {0, 300, 600}, corresponding to modes with increasing temporal frequencies. The
rightmost panel depicts the total spectral power

∑︀
q 𝑆𝑥;𝑛,q [see equation (4.3b)] of each Chebyshev mode 𝑛. The slowly

decaying long tail of fast modes indicates a regime in which fluctuations dominate over a smooth signal. The cut-off
𝑛0 = 600 removes these modes, in line with the goal to learn a hydrodynamic model for the slow long-wavelength modes.
(c) Kymographs of the spectral derivatives 𝜕𝑡𝜌 and −∇ · p at 𝑦 = 50, obtained from the spectrally truncated data.
(d) Mass conservation in the microscopic system restricts the physics-informed candidate library to terms that can be
written as divergence of a vector field. (e) Learned phenomenological coefficients 𝑎𝑙 of PDEs with increasing complexity
(decreasing sparsity) (appendix C.3). PDE 1 (J) is given by 𝜕𝑡𝜌 = 𝑎1∇ · p with 𝑎1 = −0.99. As PDE 1 is the sparsest
PDE that agrees well with analytic coarse-graining results (table 4.1), it is selected for the hydrodynamic model.
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and efficient differentiation. Here, we work with representations of the form

𝜌(𝑡,x) =
∑︀
𝑛,q

𝜌𝑛,q𝑇𝑛(𝑡)𝐹q(x), (4.3a)

p(𝑡,x) =
∑︀
𝑛,q

p̂𝑛,q𝑇𝑛(𝑡)𝐹q(x), (4.3b)

where 𝑇𝑛(𝑡) denotes a degree-𝑛 Chebyshev polynomial of the first kind [167, 168],

𝐹q(x) = exp(2𝜋𝑖q · x) is a Fourier mode with wave vector q = (𝑞𝑥, 𝑞𝑦)
⊤, and 𝜌𝑛,q

and p̂𝑛,q are complex mode coefficients (figure 4-2b and appendix C.1.3). Generally,

the choice of the basis functions should be adapted to the spatiotemporal boundary

conditions of the microscopic data (§ 4.3).

The spectral representation (4.3) enables the efficient and accurate computation

of space and time derivatives [169]. Preprocessing via spatial coarse-graining (§ 4.2.2)

ensures that the mode coefficients 𝜌𝑛,q and p̂𝑛,q decay fast for |q| ≫ 1/(2𝜋𝜎) (fig-

ure 4-2b, left). Furthermore, focusing on the slow hydrodynamic modes, we can filter

out the fast modes with 𝑛 > 𝑛0 by keeping only the dominant Chebyshev terms in

equation (4.3). The cut-off value 𝑛0 can usually be directly inferred from a character-

istic steep drop-off in the power spectrum of the data, which signals the transition to

hydrodynamically irrelevant fast fluctuations [170] (figure 4-2b, right). Choosing 𝑛0

according to this criterion yields accurate, spatiotemporally consistent derivatives as

illustrated for the kymographs of the derivative fields 𝜕𝑡𝜌 and −∇ · p, which are

essential to capture mass conservation. More generally, combining kernel-based and

spectral coarse-graining also mitigates measurement noise, enabling a direct applica-

tion to experimental data (§ 4.3).

4.2.4 Inference of hydrodynamic equations

To infer hydrodynamic models that are consistent with the coarse-grained projected

fields (4.3), we build on a recently proposed sparse regression framework [56, 57]. The

specific aim is to determine sparse PDEs for the density and polarization dynamics
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of the form

𝜕𝑡𝜌 =
∑︀
𝑙

𝑎𝑙 𝐶𝑙(𝜌,p), (4.4a)

𝜕𝑡p =
∑︀
𝑙

𝑏𝑙 𝐶𝑙(𝜌,p). (4.4b)

The candidate library terms {𝐶𝑙(𝜌,p)} and {𝐶𝑙(𝜌,p)} are functions of the fields and

their derivatives, which can be directly evaluated at various sample points using the

spectral representation (4.3). Equations (4.4) thus define a linear system for the phe-

nomenological coefficients 𝑎𝑙 and 𝑏𝑙, and the objective is to find sparse solutions such

that the resulting hydrodynamic model recapitulates the collective particle dynamics.

Learned hydrodynamic models must respect the symmetries of the underlying

microscopic dynamics. Prior knowledge of such symmetries can greatly accelerate

the inference process by placing constraints on the model parameters 𝑎𝑙 and 𝑏𝑙. The

learning ansatz (4.4b) already assumes global rotational invariance by using identical

coefficients 𝑏𝑙 for the 𝑥 and 𝑦 components of the polarization field equations. Gener-

ally, coordinate-independence of hydrodynamic models demands that the dynamical

fields and the library functions 𝐶𝑙, 𝐶𝑙, etc. have the correct scalar, vectorial or tenso-

rial transformation properties. This fact imposes stringent constraints on permissible

libraries, as do microscopic conservation laws.

Symmetries and conservation laws: Generating a physics-informed candi-

date library

Whenever prior knowledge about (broken) symmetries and conservation laws is avail-

able, it should inform the candidate library construction to ensure that the PDE

learning is performed within a properly constrained model space. For example, the

active particle model in equation (4.1) describes a chiral dynamical system with in-

trinsic microscopic rotation rates Ω𝑖 ≥ 0. The space of valid hydrodynamic models

therefore includes PDEs in which the mirror symmetry is explicitly broken. For-

mally, this implies the Levi-Civita symbol 𝜖𝑖𝑗 can be used to generate a pseudo-vector

p⊥ := 𝜖⊤ · p = (−𝑝𝑦, 𝑝𝑥)⊤ that has to be included in the construction of the candidate
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Figure 4-3: Learning polarization dynamics. (a) Same particle dynamics as in figure 4-2a for visual reference. (b) Top:
Coarse-grained density and polarization field as in figure 4-2a. Bottom: Magnitude |p| of the coarse-grained polarization
field. Emerging vortices (𝑡 = 400, 1250) appear as ring-like patterns in |p|. Training data were randomly sampled
from the time window 𝑡 ∈ [40, 400], enclosed within the gray box. c: Physics-informed candidate library (with 𝑏1 =
−𝐷𝑟) including terms constructed from p⊥ = (−𝑝𝑦, 𝑝𝑥)

⊤, which are allowed due to the chirality of the microscopic
system. d: Learned phenomenological coefficients 𝑏𝑙 of PDEs with increasing complexity (appendix C.3). For all PDEs,
learned coefficients of the linear terms p⊥ and ∇𝜌 compare well with analytic predictions (table 4.1, appendix C.2.2).
e: Simulation of the final hydrodynamic model (PDE 8 for the polarization dynamics and PDE 1 in figure 4-2e for the
density dynamics). Starting from random initial conditions (𝑡 = 0), long-lived vortex states emerge on a similar time
scale, with similar spatial patterns, and with comparable density and polarization amplitudes as in the coarse-grained
microscopic model data (b). Hydrodynamic models with PDEs sparser than PDE 8 do not form stable vortex patterns.
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libraries {𝐶𝑙(𝜌,p)} and {𝐶𝑙(𝜌,p)}.

Additional constraints on the scalar library terms {𝐶𝑙(𝜌,p)} in equation (4.4a)

arise from particle number conservation, which is known to hold for many experimen-

tal active matter systems as well as for microscopic models such as equation (4.1). In

this case, it suffices to consider functions 𝐶𝑙 that can be written as the divergence of

a vector field that represents some flux contribution. In the application below, we in-

cluded fluxes up to first order in derivatives and third order in the fields (figure 4-2d);

if needed, this scalar library can be easily extended.

The vectorial library {𝐶𝑙(𝜌,p)} for the chiral polarization dynamics, equation (4.4b),

cannot be constrained further by symmetries or conservation laws. Mechanical sub-

strate interactions with the environment as invoked by the microscopic model (4.1)

and present in many active matter experiments explicitly break Galilean invariance,

leading to external forces and torques whose form is not known a priori. We therefore

included in equation (4.4b) also vector fields that cannot be written as a divergence,

such as p⊥, 𝜌p or (p · ∇)p, in our candidate library {𝐶𝑙(𝜌,p)}.

In general, higher order terms and terms including derivatives can be systemati-

cally constructed from the basic set of available fields and operators ℬ = {𝜌,p,p⊥,∇}.
We illustrate the general procedure for an example library containing up to cubic

terms from ℬ. The first step is to write the list of distinct rank-2 tensors

𝒮 = {𝑠I,pp,pp⊥,p⊥p⊥,∇p,∇p⊥} ,

where 𝑠 ∈ {1, 𝜌,∇ · p,∇ · p⊥} represents one of the linearly independent scalars that

can be formed from elements in ℬ. From any tensor Σ ∈ 𝒮 and its transpose, we

can then generate vectorial terms 𝐶𝑙 by forming scalar products with the elements

in ℬ. In particular, terms ∇ · Σ yield possible contributions from internal stresses

and torques due to alignment interactions, while Σ · p and Σ · p⊥ correspond to

substrate-dependent interactions.

For pattern-forming systems with emergent length scale selection, the library

should be extended to include Swift-Hohenberg-type [171] terms ∆2p, ∆2p⊥, etc. [3, 19].
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Such terms can stabilize small-wavelength modes and, combined with ∆p and ∆p⊥,

can give rise to patterns of well-defined length [171]. The final 19-term library with

linearly independent terms (appendix C.1.5) used to learn the polarization dynamics

for the chiral particle model from equation (4.1) is summarized in figure 4-3c.

Sparse model learning

To determine the hydrodynamic parameters 𝑎𝑙 and 𝑏𝑙 in equations (4.4), we randomly

sampled the coarse-grained fields 𝜌(𝑡,x) and p(𝑡,x) and their derivatives at ∼ 106

space-time points within a predetermined learning interval (appendix C.1). Generally,

the success or failure of hydrodynamic model learning depends crucially on the choice

of an appropriate space-time sampling interval. As a guiding principle, learning should

be performed during the relaxation stage, when both time and space derivatives show

the most substantial variation.

Evaluating equations (4.4a) and (4.4b) at all sample points yields linear sys-

tems of the form U𝑡 = Θ𝜉, where the vector U𝑡 contains the time derivatives (ap-

pendix C.1.4). The columns of the matrix Θ hold the numerical values of the library

terms 𝐶𝑙(𝜌,p) and 𝐶𝑙(𝜌,p) computed from the spectral representations (4.3). The

aim is to infer a parsimonious model so that the vector 𝜉 containing the hydrodynamic

parameters 𝑎𝑙 or 𝑏𝑙 is sparse. In this case, the corresponding PDE only contains a

subset of the library terms, and we refer to the total number of terms in a PDE as

its complexity.

To estimate sparse parameters 𝜉, we used the previously proposed sequentially

thresholded least-squares (STLSQ) algorithm from SINDy [56]. STLSQ first finds

the least-squares estimate 𝜉 = arg min𝜉 ||U𝑡 − Θ𝜉||22. Subsequently, sparsity of 𝜉 is

imposed by iteratively setting coefficients below a thresholding hyperparameter 𝜏 to

zero. Adopting a stability selection approach [172, 173, 64, 65] in which 𝜏 is sys-

tematically varied over a regularization path [𝜏max, 𝜏min] (appendix C.1.4), we obtain

candidate PDEs of increasing complexity (Figs. 4-2e and 4-3d) whose predictions need

to be validated against the phenomenology of the input data.
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Performance improvements and pitfalls

Sparse regression-based learning becomes more efficient and robust if known symme-

tries or other available information can be used to reduce the number of undeter-

mined parameters 𝑎𝑙 and 𝑏𝑙 in equations (4.4). Equally helpful and important is prior

knowledge of the relevant time and length scales. The coarse-grained field data need

to be sampled across spatiotemporal scales that contain sufficient dynamical infor-

mation; over-sampling in a steady-state typically prevents algorithms from learning

terms relevant to the relaxation dynamics. Systems exhibiting slow diffusion time-

scales can pose additional challenges. For example, generic analytic coarse-graining

(appendix C.2.1) shows that additive rotational noise as in equation (4.1b) implies

the linear term −𝐷𝑟p in the polarization dynamics in (4.4b). If the diffusive time

scale 1/𝐷𝑟 approaches or exceeds the duration of the sampling time interval, then

the learned PDEs may not properly capture the relaxation dynamics of the polar-

ization field. From a practical perspective, this is not a prohibitive obstacle, as the

rotational diffusion coefficient 𝐷𝑟 can be often measured independently from isolated

single-particle trajectories [174]. In this case, fixing −𝐷𝑟p in equation (4.4b) and per-

forming the regression over the remaining parameters produced satisfactory learning

results (see figure 4-3, where 1/𝐷𝑟 ∼ 100 is comparable to the length of the learning

interval 𝑡 ∈ [40, 400]).

4.2.5 Validation of learned models

The STLSQ algorithm with stability selection proposes PDEs of increasing complexity

– the final learning step is to identify the sparsest acceptable hydrodynamic model

among these (figure 4-1). This can be achieved by simulating all the candidate PDEs

(appendix C.1.6) and comparing their predictions against the original data and, if

available, against analytic coarse-graining results (appendix C.2).

For the microscopic particle model from equation (4.1), the sparsest learned PDE

for the particle number density is 𝜕𝑡𝜌 = 𝑎1∇ · p (figure 4-2e); this mass conservation

equation is also predicted by analytic coarse-graining (appendix C.2). The learned co-
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Table 4.1: Parameters of the hydrodynamic model learned for the microscopic
dynamics in equation (4.1) and values predicted by analytic coarse-graining (ap-
pendix C.2.2). ⟨·⟩𝑝 denotes averages over the distribution 𝑝(𝑣𝑖,Ω𝑖) of particle velocities
𝑣𝑖 and rotation rates Ω𝑖 (appendix C.1.1).

Term Learned value Analytic coarse-graining
Density dynamics
𝑎1∇ · p 𝑎1 = −0.99 −⟨𝑣𝑖⟩𝑝 = −1.00

Polarization dynamics
𝑏3p⊥ 𝑏3 = 0.44 ⟨𝑣𝑖Ω𝑖⟩𝑝/⟨𝑣𝑖⟩𝑝 = 0.50
𝑏5∇𝜌 𝑏5 = −0.60 −1

2
⟨𝑣2𝑖 ⟩𝑝/⟨𝑣𝑖⟩𝑝 = −0.57

efficient 𝑎1 = −0.99 implies an effective number density flux −𝑎1p ≈ p, which agrees

very well with the analytic prediction ⟨𝑣𝑖⟩𝑝p = p. Additional coefficients appearing in

more complex models proposed by the algorithm are at least one order of magnitude

smaller than 𝑎1 (figure 4-2e). Hence, as part of a hydrodynamic description of the mi-

croscopic system equation (4.1), we adopt the minimal density dynamics 𝜕𝑡𝜌 = 𝑎1∇·p
from now on.

The sparsest learned PDE for the dynamics of the polarization field p only contains

three terms. However, together with the density dynamics, the resulting hydrody-

namic models are either unstable or do not lead to the formation of vortex patterns.

Our simulations showed that a certain level of complexity is required to reproduce

the dynamics observed in the test data. In particular, there exists a unique sparsest

model (PDE 8 in figure 4-3d) for which long-lived vortex states emerge from random

initial conditions. The resulting hydrodynamic model exhibits density and polariza-

tion patterns quantitatively similar to those observed in the original particle system

(figure 4-3a,b,e ), which also form on a similar time scale. Furthermore, the learned

coefficients of the linear terms ∼ p⊥ and ∼ ∇𝜌 agree well with the analytic predic-

tions (table 4.1, appendix C.2.2). As the learning only used coarse-grained field data

in the time interval 𝑡 ∈ [40, 400], simulation results for 𝑡 > 400 represent predictions

of the learned hydrodynamic model (figure 4-3e). The close agreement between origi-

nal data and the model simulations (figure 4-3b,e) show that the inference framework

has succeeded in learning a previously unknown hydrodynamic description for a chiral

polar active particle system with broadly distributed microscopic parameters.
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Figure 4-4: Learning from active polar particle experiments. (a) Snapshot of particle positions and velocity components
of ∼ 2, 200 spontaneously moving Quincke rollers in a microfluidic channel [9]. Scale bar, 200 µm. (b) Coarse-grained
density field 𝜌(𝑡,x), expressed as the fraction of area occupied by the rollers with diameter 𝐷𝑐 = 4.8 µm, and components
𝑣𝑥(𝑡,x) and 𝑣𝑦(𝑡,x) of the coarse-grained velocity field (𝜎 = 45µm). 5× 105 randomly sampled data points from ∼ 580
such snapshots over a time duration of 1.4 s were used for the learning algorithm. (c) Physics-informed candidate
libraries for the density and velocity dynamics, {𝐶𝑙(𝜌,v)} and {𝐶𝑙(𝜌,v)}, respectively [equation (4.5)]. These are
the same libraries as shown in Figs. 4-2e and 4-3d, but without the chiral terms and replacing p → v. (d) Learned
phenomenological coefficients 𝑐𝑙 and 𝑑𝑙 of the four sparsest PDEs for the density (left) and velocity (right) dynamics.
The coefficients are non-dimensionalized with length scale 𝜎 and time scale 𝜎/𝑣0, where 𝑣0 = 1.2mms−1 is the average
roller speed. PDE 1 for density dynamics corresponds to 𝜕𝑡𝜌 = 𝑐3∇ · (𝜌v) with 𝑐3 ≃ −0.95. PDE 2 for the velocity
dynamics is shown in equation (4.6b). Learned coefficients compare well with the values reported in Ref. [9] (table 4.2).
(e) Simulation snapshot at 𝑡 = 1.8 s of the learned hydrodynamic model (PDEs marked by J in (a)) in a doubly periodic
domain. Spontaneous flow emerges from random initial conditions, and exhibits density and velocity fluctuations that
show similar spatial patterns and amplitudes as seen in the experiments (a). (f) Simulation snapshots at 𝑡 = 18.5 s of
the same hydrodynamic model as in (e) on a square domain with reflective boundary conditions. The model predicts the
emergence of a vortex-like flow permeated by density shock waves. This prediction agrees qualitatively with experimental
observations (rightmost panel) of Quincke rollers in a 5mm × 5mm confinement with average density 𝜌0 ≈ 0.1 (Image
credits: Alexandre Morin, Delphine Geyer, and Denis Bartolo). Scale bars, 200 µm (simulation) and 1mm (experiment).
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4.3 Learning from experimental data

The inference framework can be readily applied to experimental data. We illustrate

this by learning a quantitative hydrodynamic model directly from a video recorded in

a recent study [9] of driven colloidal suspensions (figure 4-4a). In these experiments,

an electro-hydrodynamic instability enables micron-sized particles to self-propel with

speeds up to a few millimeters per second across a surface. The rich collective dynam-

ics of these so-called Quincke rollers [5, 9] provides a striking experimental realization

of self-organization in active polar particle systems [41, 175, 11].

4.3.1 Coarse-graining and spectral representation of experi-

mental data

To gather dynamic particle data from experiments, we extracted particle positions

x𝑖(𝑡) from the Supplementary Movie S2 in Ref. [9], with particle velocities v𝑖(𝑡) =

𝑑
𝑑𝑡
x𝑖 replacing the particle orientations p𝑖(𝑡) from before. This data set captures a

weakly compressible suspension of Quincke rollers in a part of a racetrack-shaped

channel (figure 4-4a). We then applied the kernel coarse-graining [equations (4.2),

𝜎 = 45µm] to obtain the density field 𝜌 and the velocity field v = p/𝜌. Accounting

for the non-periodicity of the data, 𝜌 and v were projected on a Chebyshev polynomial

basis [equation (4.3)] in time and space (figure 4-4b). Filtering out non-hydrodynamic

fast modes with temporal mode numbers 𝑛 > 𝑛0, we found that the final learning

results were robust for a large range of cut-off modes 𝑛0 (appendix C.3).

4.3.2 Physics-informed library

The goal is to learn a hydrodynamic model of the form

𝜕𝑡𝜌 =
∑︀
𝑙

𝑐𝑙 𝐶𝑙(𝜌,v), (4.5a)

𝜕𝑡v =
∑︀
𝑙

𝑑𝑙 𝐶𝑙(𝜌,v), (4.5b)
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Table 4.2: Parameters of the learned hydrodynamic model for the Quincke roller
system are close to values expected from analytic coarse-graining (*) and reported in
Ref. [9] for experiments performed at mean area fraction 𝜌0 ≈ 0.11.

Term Learned values Ref. [9]
Density dynamics

𝑐3∇ · (𝜌v) 𝑐3 = −0.95 −1.0*
Velocity dynamics

(𝑑1 + 𝑑2𝜌)v
+𝑑3|v|2v

√︁
𝑑1+𝑑2𝜌0

−𝑑3
= 1.21mm/s 1.20 mm/s

𝑑4∇𝜌 𝑑4 = −1.62 mm2/s2 −5.0± 2.0 mm2/s2
𝑑5(v · ∇)v 𝑑5 = −0.67 −0.7 ± 0.1

where 𝐶𝑙(𝜌,v) and 𝐶𝑙(𝜌,v) denote library terms with coefficients 𝑐𝑙 and 𝑑𝑙, re-

spectively. The experimental Quincke roller system shares several key features with

the particle model in equation (4.1), so the construction of the candidate libraries{︀
𝐶𝑙(𝜌,𝑣)

}︀
and

{︀
𝐶𝑙(𝜌,v)

}︀
follows similar principles (figure 4-4c). Conservation of

particle number implies that 𝐶𝑙 can be written as divergences of vector fields. How-

ever, rollers do not explicitly break mirror symmetry, so chiral terms can be dropped

from the
{︀
𝐶𝑙(𝜌,v)

}︀
library, leaving the candidate terms shown in figure 4-4c.

4.3.3 Learned hydrodynamic equations and validation

The sparse regression algorithm proposed a hierarchy of hydrodynamic models with

increasing complexity (figure 4-4d). The sparsest learned model that recapitulates

the experimental observations is given by

𝜕𝑡𝜌 = 𝑐3∇ · (𝜌v), (4.6a)

𝜕𝑡v = 𝑑1v + 𝑑2𝜌v + 𝑑3|v|2v + 𝑑4∇𝜌+ 𝑑5(v · ∇)v. (4.6b)

Notably, equations (4.6) contain all the relevant terms to describe the propagation

of underdamped sound waves, a counter-intuitive, but characteristic feature of over-

damped active polar particle systems [9].

Although the finite experimental observation window and imperfect particle track-

ing was expected to limit the accuracy of the learned models, the learned coeffi-
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cient values agree well with corresponding parameters estimated in Ref. [9] by fitting

a linearized Toner-Tu model to the experimental data (table 4.2). The coefficient

𝑐3 ≃ −0.95 in the mass conservation equation is close to the theoretically expected

value −1. The learned coefficient 𝑑4 in the velocity equation (4.6b) is of similar

magnitude but slightly less negative than the dispersion-based estimate in Ref. [9].

The learned coefficients 𝑑1, 𝑑2, and 𝑑3 (table C.4), to our knowledge, had not been

determined previously. Despite being inferred from a single video, these parameters

yield a remarkably accurate prediction 𝑣0(𝜌0) =
√︀
−(𝑑1 + 𝑑2𝜌0)/𝑑3 for the typical

roller speed as a function of the area fraction 𝜌0 (Supplementary figure 4 in Ref. [9]

and figure 4-5). Similarly, the learned coefficient 𝑑5 of the nonlinear advective term

∼ (v · ∇)v, is in excellent agreement with the value reported in Ref [9]. Interest-

ingly, 𝑑5 ̸= −1 reveals the broken Galilean invariance [40, 11] due to fluid-mediated

roller-substrate interaction, a key physical aspect of the experimental system that is

robustly discovered by the hydrodynamic model learning framework.

To validate the learned hydrodynamic model, we simulated equations (4.6) on a

periodic domain comparable to the experimental observation window (see figure 4-4e
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Figure 4-5: The learned model accurately predicts collective Quincke roller speeds 𝑣0
at different average area fractions 𝜌0. Although equation (4.6) was learned from a
single experiment (Supplementary Movie S2 in Ref. [9]) at fixed average area fraction
𝜌0 = 0.11 (filled black circle), the model prediction 𝑣0(𝜌0) =

√︀
−(𝑑1 + 𝑑2𝜌0)/𝑑3 (solid

line) with inferred parameters 𝑑1, 𝑑2, 𝑑3 (table C.4), agrees well the experimentally
measured speed values (red symbols) reported in Supplementary figure 4 of Ref. [9].
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and appendix C.1.6). Starting from random initial conditions, spontaneously flowing

states emerge, even though the spontaneous onset of particle flow is not a part of the

experimental data from which the model was learned. The emergent density and flow

patterns are quantitatively similar to the experimentally observed ones. In particular,

the learned model predicts the formation of transverse velocity bands as seen in the

experiments (figure 4-4b,e).

4.3.4 Predicting collective roller dynamics in confinement

Useful models can make predictions for a variety of experimental conditions. At

minimum, if a learned hydrodynamic model captures the most relevant physics of

an active system, then it should remain valid in different geometries and boundary

conditions. To confirm this for the Quincke system, we simulated equations (4.6) on

a square domain using no-flux and shear-free boundary conditions (appendix C.1.6).

Starting from random initial conditions, our learned model predicts the formation of a

vortex-like flow, permeated by four interwoven density shock waves, which arise from

reflections at the boundary (figure 4-4f, left ). Remarkably, this behavior has indeed

been observed in experiments [5], in which Quincke rollers were confined within a

square domain (figure 4-4f, right). These results demonstrate the practical potential

of automated model learning for complex active matter systems.

4.4 Conclusions

Leveraging spectral representations of field observables, we have presented a PDE

learning framework that robustly identifies quantitative hydrodynamic models for

the self-organized dynamics of active matter systems from both microscopic simula-

tions and experimental data. This approach complements traditional analytic coarse-

graining techniques [36, 37, 11, 38, 39] which require ad hoc moment closures to trun-

cate infinite hierarchies of coupled mode equations (appendix C.2). Analytic closures

typically neglect correlations and rely on approximations that may not be valid in

interacting active matter systems. Automated learning of hydrodynamic equations
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yields data-informed closure relations, while simultaneously providing quantitative

measurements of phenomenological coefficients (viscosities, elastic moduli, etc.) from

video data [176].

Successful model learning requires both good data and a good library. Good

data need to sample all dynamically relevant length and time scales [177]. A good

library is large enough to include all hydrodynamically relevant terms and small

enough to enable robust sparse regression [65]. Since the number of possible terms

increases combinatorially with the number of fields and differential operators, library

construction should be guided by prior knowledge of global, local, and explicitly bro-

ken symmetries. Such physics-informed libraries ensure properly constrained model

search spaces, promising more robust and efficient sparse regression. Equally impor-

tant is the use of suitable spectral field representations – without these an accurate

evaluation of the library terms seems nearly impossible even for very-high quality

data.

The presented framework complements modern machine learning approaches, from

model-free methods [51, 50] to those that leverage a priori known model structure to

predict complex dynamics [53, 178, 166], infer model parameters [176], or partially

replace PDE models with suitably trained neural networks [52, 54]. Our approach pro-

vides interpretable hydrodynamic equations and a direct quantitative mapping from

possibly heterogeneous microscopic systems to macroscopic hydrodynamic parame-

ters. Due to its generic nature, the underlying framework can be easily extended to a

larger number of hydrodynamic variables and fields with higher tensorial symmetry.
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Chapter 5

Summary and outlook

5.1 Conclusions

In this thesis, we have taken a three-fold approach to understand and gain insights

into the collective dynamics of active fluids. Broadly, this involved – 1) modeling the

swimming behavior of individual micro-organisms in complex fluids, 2) investigating

continuum phenomenological models for active fluids to gain insights into pattern

forming systems, and 3) developing a learning framework that translates microscopic

particle data from active particle experiments and simulations into continuum hydro-

dynamic models.

First, in Chapter 2, we investigated cylindrical squirmers in viscoplastic fluids to

study the impact of a yield stress on the swimming characteristics of micro-organisms.

To begin, we first addressed the classical problem of a translating cylinder in a vis-

coplastic fluid, particularly in the high Bingham number limit. When slip is allowed

at the cylinder surface, as is commonly observed experimentally, we obtained pre-

viously unknown analytical solutions using slipline theory from ideal plasticity and

also provided numerical evidence for these solutions. The associated analytical cal-

culations and numerical solvers allowed us to modify the boundary conditions on the

cylinder surface to investigate squirmers. Our results showed that the yield stress

localizes the flow patterns, sometimes within thin viscoplastic boundary layers; this

indicates that viscoplasticity can directly impact inter-particle interactions as well as
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the nutrient uptake of organisms. We also found that the swimming mode with a

normal surface velocity, for example via secretion and absorption of mucus [87], is

energetically more efficient rather than ciliary propulsion in viscoplastic fluids.

Next, in Chapter 3, we investigated a continuum phenomenological model that

couples active energy injection through a generic linear instability with advective non-

linearity. Specifically, we considered the generalized Navier-Stokes (GNS) equations;

such models have shown promising results in modeling active turbulence [17, 18].

With a view to explore if such phenomenological models could be relevant in other

pattern-forming systems, we analyzed linearly driven flows on rotating spheres by

extending a recent study of the GNS model on a stationary sphere [66]. At high

rotation rates, direct numerical simulations show the emergence of alternating zonal

jets, similar to those observed in planetary atmospheres. We also derived exact so-

lutions which are a combination of alternating zonal jets and westward-propagating

Rossby waves. Analyzing the phase speed of the waves in the simulations showed

that they are close to the analytical solutions, further highlighting the usefulness of

such minimal phenomenological models.

Finally, in Chapter 4, we successfully demonstrated how more specific and pre-

viously unknown phenomenological models could be discovered from active particle

simulation or experimental data. To achieve this, we presented a learning framework

that leverages recent sparse regression methods and spectral basis representations

to translate noisy particle data into continuum hydrodynamic models. This frame-

work was successfully applied to data from a chiral active particle model mimicking

swimming cells as well as from experiments of self-propelled colloidal rollers. The

learned models quantitatively reproduced the self-organized phenomenology in the

microscopic data and were validated against coarse-grained equations.

To conclude, existing phenomenological models and domain knowledge of ac-

tive matter provided us key insights about conservation laws, global and explicitly

broken symmetries, and dynamical principles behind pattern formation. These in-

sights were crucial for the successful application of equation discovery methods to the

non-trivial active systems we have considered. Using this framework, we anticipate
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that many previously intractable physical and biological systems can soon find in-

terpretable quantitative continuum descriptions that may reveal novel ordering and

self-organization principles.

5.2 Future extensions

Our work raises several questions that present avenues for future research.

Viscoplastic squirmers

Beyond the cylindrical squirmers we have considered, more realistic spherical models

might further enhance our understanding of micro-organism swimming in complex

fluids. Such spherical squirmers have been investigated in the context of Newtonian

or viscoelastic fluids [82, 29, 86, 33], but not viscoplastic fluids. Furthermore, in

our study, we have ignored the impact of viscoplasticity on the cilia, which could

themselves become immobile due to the yield stress. Therefore, further work needs to

be pursued to quantify the energetics of ciliary motion in yield stress fluids, perhaps

by building on viscoplastic slender body theory [35].

Rotating GNS models

The GNS model we investigated parameterizes the dominant length scales that arise

from sub-meso-scale processes through higher-order derivatives acting on the velocity

field. In Fourier space, these terms correspond to a growth rate dependent on the

wavenumber through a polynomial function with a single positive maximum (figure 3-

2). This spectral forcing can be easily modified, for example, to take into account

multiple dominant length scales by modifying the polynomial or replacing it with an

arbitrary function. Through direct numerical simulations of such a model, it would

be interesting to explore how the dominant modes corresponding to different length

scales interact. Beyond direct numerical simulations, the nonlinear dynamics of the

rotating GNS system could also be investigated using triad truncation [179] as was

done recently for non-rotating GNS flows [18]. The flat-plane triad dynamics based
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on Fourier modes can be adapted to the 𝛽−plane equations in (3.7b) to explore the

effect of rotation through the 𝛽 parameter. Additionally, the triad analysis can also be

done using spherical harmonics, extending recent results for the barotropic vorticity

equation [(3.3b) without the GNS forcing] by Lynch [125]. Both these analyses would

be of interest in the context of geophysical flows.

Learning framework for hydrodynamic models

The field of equation discovery and machine learning for dynamical systems is rapidly

evolving [50]. Hence, there is vast potential for future enhancements in the pre-

sented learning framework by adopting recent advances in sparse regression algo-

rithms such as Iterative Hard Thresholding [64] and Sparse Relaxed Regularized Re-

gression (SR3) [180], and weak formulations [62, 63]. Furthermore, model selection

strategies such as cross-validation [181] and information criteria [182] can also be

integrated. In so doing, error metrics between the data and the simulations must

be defined in a statistical and spectral sense so as to quantify the phenomenological

similarities. Additionally, since the library of terms is crucial for the successful appli-

cation of sparse regression, it would be essential in the future to have automated ways

of generating libraries that respect the relevant vectorial and tensorial symmetries up

to desired orders in the fields and derivatives.

In view of the successful applications presented in this thesis, we expect that

the underlying computational framework can be directly applied to a wide variety of

passive and active matter systems. Some examples include controlled experimental

data for bacterial swarms [145] or fish schools [183], whose hydrodynamic parameters

are largely unknown so far.
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Appendix A
This appendix is associated with Chapter 2.

A.1 Viscoplastic boundary layers for a no-slip cylin-

der

In this appendix, we outline a boundary layer theory for a translating cylinder with

a no-slip surface. To set the scene, figure A-1 shows a magnification of the boundary-

layer structure below the upper rotating plug.

A.1.1 Beyond the rotating plug

Outside the region directly underneath the plug, the main balance of forces expected

for the boundary layer against the surface of the cylinder is given by

𝜕𝑟𝑝 ∼ 0 and 𝜕𝜃𝑝 ∼ 𝜕𝑟(𝑟
2𝜏𝑟𝜃), where 𝜏𝑟𝜃 ∼ 𝜕𝑟𝑣 + Bi sgn(𝜕𝑟𝑣) (A.1)

(see Balmforth et al. [89]). The solution must match to the nearly perfectly plastic

flow outside the boundary layer, where the pressure is given by (2.18), the velocity

is directed along the 𝛼−lines and the shear rates are much weaker. The latter two

conditions translate to 𝑣(𝑟𝑏) ∼ 0 and 𝜕𝑟𝑣(𝑟𝑏) ∼ 0, where 𝑟𝑏 is the edge of the boundary

layer. Hence, after incorporating the no-slip condition 𝑣(1) = sin 𝜃, we find

𝑣 = −2Bi(𝑟𝑏 − 𝑟)2 sgn(sin 𝜃), 𝑟𝑏 = 1 + Bi−1/2

√︂
1

2
| sin 𝜃|, (A.2)
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Figure A-1: A magnification of the region underneath the upper rotating plug for a
no-slip cylinder with Bi = 212. The color shading shows log10 �̇�, and the blue lines
are streamlines. The 𝛼−lines (black) of the slipline solution are selected to coincide
with the streamlines at 𝜃 = 1

2
𝜋 and they match with the streamlines except near the

boundary layer attached to the cylinder.

indicating that the thickness of the boundary layer is 𝒪(Bi−1/2). Such parabolic

velocity profiles have been noted previously by Tokpavi et al. [75].

A.1.2 Underneath the rotating plug

Directly underneath the rotating plug where the pressure jump is smoothed, the angu-

lar scale becomes smaller and we rescale the variables to reflect this whilst maintaining

the main balances demanded by force balance and the continuity equation:

(𝑟, 𝜃) =
(︀
1 + Bi−𝑎𝜉, 1

2
𝜋 − Bi−𝑏Θ

)︀
, [𝑢, 𝑣] ∼ [Bi𝑏−𝑎𝑈(𝜉,Θ), 𝑉 (𝜉,Θ)], (A.3)

𝑝 ∼ Bi𝑃 (𝜉,Θ) and 𝜏𝜉Θ ∼ Bi𝑎𝜕𝜉𝑉 − Bi, (A.4)

where 𝜂 and Θ are 𝒪(1), and the exponents 𝑎 > 1
2

and 𝑏 > 0 satisfy 2𝑎 = 1 + 𝑏. The

force balance in (A.1) then becomes

𝜕𝜉𝑃 ∼ 0 & 𝜕Θ𝑃 ∼ 𝜕2𝜉𝑉. (A.5)
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The no-slip condition is now 𝑉 (0) ∼ 1, whereas matching again demands that

(𝑉, 𝜕𝜉𝑉 ) → 0 at the edge of the boundary layer 𝜉 = Ξ(Θ). Hence,

𝑉 ∼ −
(︂

1 − 𝜉

Ξ

)︂2

sgn(𝑦) and 𝜕Θ𝑃 = − 2

Ξ2
sgn(𝑦). (A.6)

At this stage, unlike in (A.2), we cannot match 𝑃 to the pressure of the slipline

solution to determine the boundary-layer profile Ξ(Θ) because of the intervention of

the rotating plug. Instead, we proceed by dividing up the boundary layer into the

part surrounding 𝜃 = 1
2
𝜋 that is directly attached to the rotating plug, and the part

beyond where the boundary layer detaches from the plug and another nearly perfectly

plastic flow separates the two. For the first part, the rigid rotation of the plug implies

a velocity field of (𝑢, 𝑣) = 𝜔(cos 𝜃, 𝑟− sin 𝜃), where the rotation rate is observed from

the numerical computations to be 𝜔 ∼ 1 − Bi−𝑐Ω, with Ω > 0; see figure 2-3a. If

we now integrate the leading-order continuity equation, 𝜕Ξ𝑈 − 𝜕Θ𝑉 ∼ 0, over the

boundary layer from 𝜉 = 0 to 𝜉 = Ξ, we find[︃∫︁ Ξ

0

(︂
1 − 𝜉

Ξ

)︂2

𝑑𝜉

]︃
Θ

=
1

3
𝜕ΘΞ = 𝑈(0,Θ) − 𝑈(Ξ,Θ) (A.7)

≡ Bi𝑎−𝑏(1 − 𝜔) cos 𝜃 ∼ Bi𝑎−2𝑏−𝑐ΩΘ. (A.8)

Hence 2𝑏+ 𝑐 = 𝑎 and

Ξ(Θ) = Ξ(0) +
3

2
ΩΘ2, (A.9)

which thickens away from the centre of the fan at 𝐴, unlike the profile in (A.2).

For the part of the smoothing region where the plug has detached from the bound-

ary layer, there is an intervening window of purely plastic deformation in which the

velocity field is adjusted away from rigid rotation. Because this window is relatively

small, the 𝛼−lines remain close to the involutes of the perfectly plastic slipline solu-

tion, which begin at the angular location 𝜃 = 𝜋
2
−Bi−𝑏Θ and reach the base of the plug

for 𝑦 ∼ 1 and 𝑥 = Bi−𝑏Θ. This proximity indicates that 𝑢 ∼ Bi−𝑏𝜔Θ − Bi𝑏−𝑎𝜛(Θ)
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at the edge of the boundary layer, where the correction Bi𝑏−𝑎𝜛(Θ) represents the

velocity adjustment incurred by the modification to the slipline. Thence,

1

3
𝜕ΘΞ ∼ 𝑈(0,Θ) − 𝑈(Ξ, 𝜃) ∼ 𝜛(Θ) + ΩΘ − 1

6
Bi𝑎−4𝑏Θ3, (A.10)

which indicates that 𝑎 = 4𝑏, since all the terms must come in at the same order of Bi

because the boundary layer remains continuous across the point of detachment. The

combined results for the scalings now indicate that

𝑎 =
4

7
, 𝑏 =

1

7
and 𝑐 =

2

7
; (A.11)

i.e. the boundary layer thickness scales as Bi−4/7 underneath the rotating plug, the

angular width of the smoothing region scales as Bi−1/7 and the rotation rate of the

plug approaches 1 with a scaling of Bi−2/7 (figure 2-3b).

Beyond the detachment of the plug, (A.10) implies that the boundary layer profile

becomes modified to

Ξ(Θ) ∼ Ξ* +

∫︁ Θ

Θ*

𝜛𝑑Θ − 1

8
(Θ4 − Θ4

*) +
3

2
ΩΘ2, (A.12)

where Θ* denotes the angle of detachment and the corresponding boundary layer

thickness is Ξ*. However, the term 1
8
(Θ4−Θ4

*) is problematic in view of its sign: as Θ

increases, this correction opposes the thickening of the boundary layer. Yet Ξ must

continue to thicken to become 𝑂(Bi−1/2) in order to meet the boundary layer beyond

the rotating plug described earlier. The correction 𝜛(Θ) must therefore be chosen

to eliminate the offending quartic term, suggesting that the profile remains close to

(A.9) throughout the smoothing region. If we assume this to be the case, then a final

estimate can be derived from the known pressure jump of 2𝜋Bi across the smoothing

region (see (2.18)). This jump implies that

∫︁ +∞

−∞
𝜕Θ𝑃𝑑Θ =

∫︁ +∞

−∞

2[︀
Ξ(0) + 3

2
ΩΘ2

]︀2𝑑Θ = 2𝜋, or Ξ(0) =

(︂
1

6Ω

)︂1/3

.(A.13)
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1
3Bi

−

Figure A-2: Rescaled boundary layer profiles (Ξ(Θ) − Ξ(0)) with the boundary-layer
theory prediction from (A.9)[dashed]. The vertical dashed-dotted line marks the
angular location Θ* where the rotating plug separates from the boundary layer for
Bi = 47. Within those limits, the numerical profiles match well with the boundary-
layer theory predictions.

From the computations, Ω ≈ 0.68, and so Ξ(0) ≈ 0.63. The numerical solutions,

for which the boundary-layer thickness can be determined by fitting the quadratic

velocity profile in (A.6) to 𝑣(𝑟, 𝜃) suggest that Ξ(0) is closer to 0.5. The predicted

boundary layer profile in (A.9) is plotted in figure A-2 and compared with results

extracted from the numerical computations. The departure from the quadratic profile

at the location that the plug detaches from the boundary layer is evident.

The assumption that the boundary-layer profile remains close to (A.9) even be-

yond the detachment of the plug also allows us to estimate the radius of the rotat-

ing plug: in order that this boundary layer meet the 𝑂(Bi−1/2)-thick profile outside

the smoothing region, we must have that Bi−𝑎(Ξ* + 3
2
ΩΘ2) ∼ Bi−1/2. That is, Θ =

𝒪(Bi(𝑎−1/2)/2) = 𝒪(Bi−3/28). Thus, the radius of the plug is ∼ (𝜋/2−𝜃) ∼ 𝒪(Bi−3/28),

which comfortably captures the scaling observed in the numerical computations (fig-

ure 2-3a).
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A.2 Slipline results for a partially rough cylinder

A.2.1 The drag force and lower bound

For the bounds, it suffices to consider the top right half of the slipline solution in

view of its symmetries about 𝑥 = 0 and 𝑦 = 0 (see figure 2-5 for reference). We find

the net horizontal force by summing up the contributions on the curves 𝐸𝐼 and 𝐸𝐵,

and line 𝐵𝐶 since the pressure and stresses can be determined along these yielded

regions. In the polar coordinates (𝑟
𝑃
, 𝜃

𝑃
) centered at P, the force per unit length on

the circular arc 𝐸𝐼 is ⎡⎣ −𝑝 −Bi

−Bi −𝑝

⎤⎦⎡⎣1

0

⎤⎦ =

⎡⎣ −𝑝
−Bi

⎤⎦ (A.14)

where 𝑝 = 2Bi(𝜋− 𝜗) ≡ Bi(𝜋− 2𝜃
𝑃

). Integrating the horizontal force per unit length

(given by −𝑝 cos 𝜃𝑃 + Bi sin 𝜃P) along arc 𝐸𝐼, the net horizontal force is therefore

𝐹EI

Bi
= −𝑟

EI
[2(𝜋 − 𝛽2) cos 𝛽2 + sin 𝛽2] (A.15)

with 𝑟
EI

= 𝜆 cot 𝛽2 +
√

1 − 𝜆2 (the radius of the circular arc).

On curve 𝐸𝐵, the local slipline angle is 𝜗 = 𝜃 + 1
4
𝜋 − 1

2
∆ and so the pressure is

𝑝 = 2Bi(𝜋−𝜗) = Bi(3
2
𝜋− 2𝜃+ ∆). In the 𝑥− 𝑦 coordinate system, the force per unit

length on this curve is⎡⎣−𝑝− Bi sin 2𝜗 Bi cos 2𝜗

Bi cos 2𝜗 −𝑝+ Bi sin 2𝜗

⎤⎦⎡⎣cos 𝜃

sin 𝜃

⎤⎦ , (A.16)

where 1
2
∆ < 𝜃 < 𝛽2 − 1

4
𝜋 + 1

2
∆. The horizontal force per unit length is −𝑝 cos 𝜃 −

Bi cos(∆− 𝜃), which can be integrated along 𝐸𝐵 to get the net horizontal force to be

𝐹EB

Bi
= 2(𝛽2 − 𝜋) sin

(︀
𝛽2 − 1

4
𝜋 + 1

2
∆
)︀

+ (3
2
𝜋 − 1) sin 1

2
∆ − sin

(︀
𝛽2 − 1

4
𝜋 − 1

2
∆
)︀

+

2 cos
(︀
𝛽2 − 1

4
𝜋 + 1

2
∆
)︀
− 2 cos 1

2
∆. (A.17)

Finally, on the surface 𝐵𝐶, the slipline angle is 𝜗 = 1
4
𝜋 and the pressure is 3

2
𝜋Bi.
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The horizontal force per unit length, −(1/
√

2)Bi− (1/
√

2)p, is then multiplied by the

length of 𝐵𝐶 to obtain

𝐹BC

Bi
= −

(︂
2 + 3𝜋

2
√

2

)︂
(𝜆−

√
1 − 𝜆2). (A.18)

Combining (A.15), (A.17) and (A.18), we may compute 𝐹𝑥 = 4(𝐹EI + 𝐹EB + 𝐹BC).

A.2.2 Angular momentum balance

About any arbitrary origin, the two arcs of the rigidly rotating crescent 𝐴𝐸𝐼𝐸 ′ exert

moments that must cancel in order to balance the net angular momentum of that

plug. The cross product of momentum equations 0 = ∇·𝜎, with the position vector

x from that origin, followed by the integral over the crescent, implies

0 =

∫︁ ∫︁
𝐴𝐸𝐼𝐸′

∇ · (x×𝜎)d𝑥d𝑦 =

∫︁
𝐸𝐴𝐸′

x×𝜎·ndℓ+

∫︁
𝐸𝐼𝐸′

x×𝜎·ndℓ (A.19)

where n is the outward normal to 𝐸𝐴𝐸 ′ and 𝐸𝐼𝐸 ′, and dℓ is the line element pro-

ceeding around the arcs in an anti-clockwise sense with respect to the interior. That

is,

0 =

∫︁
𝐸𝐼𝐸′

(x− x𝑃 )×𝜎·ndℓ+

∫︁
𝐸𝐴𝐸′

(x− x𝑂)×𝜎·ndℓ

+ x𝑃×
∫︁
𝐸𝐼𝐸′

𝜎·ndℓ+ x𝑂×
∫︁
𝐸𝐴𝐸′

𝜎·ndℓ (A.20)

where x𝑃 and x𝑂 denote the positions of the centres of the circular arcs. But x𝑃−x𝑂 =

(𝜆/ sin 𝛽2)ŷ and

−
∫︁
𝐸𝐴𝐸′

𝜎·ndℓ =

∫︁
𝐸𝐼𝐸′

𝜎·ndℓ ≡ 2𝐹EIx̂, (A.21)

given that the crescent must be in net force balance (which prescribes the net force on

𝐸𝐴𝐸 ′ even though the full stress tensor is not known there). The angular momentum
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balance therefore implies

0 = 𝑇EIE′ − 𝑇EAE′ − 2
𝜆𝐹EI

sin 𝛽2
, (A.22)

where 𝑇EIE′ and 𝑇EAE′ denote the torques on the arcs about their respective centres;

i.e.

𝑇EIE′ = ẑ·
∫︁
𝐸𝐼𝐸′

(x− x𝑃 )×𝜎·ndℓ = 2𝑟2
EI

∫︁ 𝜋/2

𝛽2−𝜋/2

(−Bi)d𝜃𝑝 (A.23)

and

𝑇EAE′ = ẑ·
∫︁
𝐸𝐴𝐸′

(x− x𝑂)×𝜎·̂rdℓ = 2

∫︁ 𝜋/2

𝜃
E

𝜚Bid𝜃, (A.24)

where r̂ is the radial unit vector and 𝜃
E

= 𝛽2 − 1
4
𝜋 + 1

2
∆. Altogether (and after

removing a factor of 2Bi),

0 = 𝑟2
EI

(𝜋 − 𝛽2)+𝜚(1
2
𝜋 − 𝜃

E
) +

𝜆𝐹EI

Bi sin 𝛽2
. (A.25)

Geometry of the slipline solution

Referring to figure 2-5, over the region of involutes, the geometry of the 𝛼−lines is

given by

𝑥 = 𝑥(𝜗,Θ) = 𝜆[cos𝜗+ (𝜗− Θ) sin𝜗],

𝑦 = 𝑦(𝜗,Θ) = 𝜆[sin𝜗− (𝜗− Θ) cos𝜗],
(A.26)

where Θ is the polar angle at the intersection with the circle of radius 𝜆. The length

of a slipline over the section 𝜗1 < 𝜗 < 𝜗2 is

ℓ = 1
2
𝜆
[︀
(𝜗− Θ)2

]︀𝜗2

𝜗1
. (A.27)
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The lines have a radius of curvature,

𝜛 = 𝜆(𝜗− Θ), (A.28)

and the area element can be written as

d𝑥d𝑦 → 𝜆𝜛d𝜗dΘ. (A.29)

Along the involutes, the velocity 𝑣𝛼 remains constant. The 𝛼−lines emerging from

𝐵𝐶 have 𝑣𝛼 = 1/
√

2, whereas those from 𝐸𝐵 have 𝑣𝛼 = cos 𝜃/ cos Ψ, where 𝜃 is the

polar angle of the cylinder surface point and

Ψ = 1
4
𝜋 − 1

2
∆, (A.30)

which corresponds to the angle that the characteristic makes with the normal to the

cylinder (𝜗− 𝜃 = Ψ on 𝐸𝐵). The angles two polar angles are related by

Θ = 𝜃 − tan Ψ + Ψ. (A.31)

The three key sliplines have

Θ = 1
4
𝜋 − 1 for 𝐶𝐷𝐺, 𝜃 = 𝜃

B
= 1

2
∆ for 𝐵𝐹𝐻, 𝜃 = 𝜃

E
= 𝛽2 − Ψ for 𝐸𝐼. (A.32)

The portions of these sliplines that are given by circular arcs have the radii,

𝑟
DG

= 𝜆 cot 𝛽2 + 𝜆(𝛽2 + 1 − 1
4
𝜋), (A.33)

𝑟
FH

= 𝜆 cot 𝛽2 + 𝜆(𝛽2 − 1
4
𝜋 + tan Ψ), (A.34)

𝑟
EI

= 𝜆 cot 𝛽2 +
√

1 − 𝜆2. (A.35)

Finally, the rotating plug has a rotation rate of 𝜆−1 sin 𝛽2.
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A.2.3 The net dissipation rate and upper bound

The contributions to the dissipation rate arise from either spatially extended regions

of plastic shear or from velocity jumps. For an extended region the contribution is

1
2

∫︁ ∫︁
𝜏 : �̇� d𝑥d𝑦 → Bi

∫︁ ∫︁
�̇�d𝑥d𝑦, (A.36)

where, because the velocity is directed only along the 𝛼−lines, the shear rate can be

calculated from

�̇�𝜛𝜗 =
𝜕𝑣𝛼
𝜕𝜛

⃒⃒⃒⃒
𝜗

− 𝑣𝛼
𝜛
, (A.37)

if 𝜛 now denotes the local radius of curvature. A tangential velocity jump of ∆𝑉

across an 𝛼−line provides the dissipation rate

∫︁
𝜏𝑛𝑠∆𝑉 (𝑠)d𝑠, (A.38)

where 𝑠 is the arc length and 𝜏𝑛𝑠 is the local shear stress for Cartesian coordinates

aligned with that curve. The various contributions to the net dissipation rate are

summarized below.

Region 𝐵𝐶𝐷𝐹

Over the region 𝐵𝐶𝐷𝐹 the characteristic angle 𝜗 increases from 1
4
𝜋 to 𝛽2. The

dissipation rate is

�̇� = |�̇�𝜛𝜗| =
𝑣𝛼
𝜛

=
1

𝜛
√

2
, (A.39)

and so

∫︁ ∫︁
𝐵𝐶𝐷𝐹

�̇�d𝑥d𝑦 = 𝜆

∫︁ ∫︁
𝐵𝐶𝐷𝐹

1√
2

dΘd𝜗 ≡
∫︁ ∫︁

𝐵𝐶𝐷𝐹

1√
2

d𝜗d𝜛 (A.40)
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=
1√
2

(𝛽2 − 1
4
𝜋)(𝜆−

√
1 − 𝜆2), (A.41)

given that the length of 𝐵𝐶 is 𝜆 −
√

1 − 𝜆2, which is the length of all the 𝛽−lines

across this region, or the change in the radus of curvature at each value of 𝜗.

Region 𝐸𝐵𝐹

Here, the ranges of the angles are Ψ+𝜃 < 𝜗 < 𝛽2 and 𝜃
B
< 𝜃 < 𝜃

E
, and the dissipation

rate becomes

∫︁ ∫︁
𝐸𝐵𝐹

�̇�d𝑥d𝑦 = 𝜆

∫︁ ∫︁
𝐸𝐵𝐹

(𝜗− Θ)

⃒⃒⃒⃒
𝜕𝑣𝛼
𝜕𝜃

+
𝑣𝛼

𝜗− Θ

⃒⃒⃒⃒
d𝜗d𝜃 (A.42)

=

∫︁ 𝜃
E

𝜃
B

∫︁ 𝛽2

𝜃+𝜋/4−Δ/2

|cos 𝜃 − (𝜗− Θ) sin 𝜃| d𝜗d𝜃 (A.43)

(since 𝜆 ≡ cos Ψ). The absolute value here makes further progress difficult. Moreover,

sgn(�̇�𝜛𝜗) < 0 if the velocity field is to be consistent with the slipline solution, for which

𝜏𝜗𝜛 = −Bi. This consistency condition fails for 𝛽2 > 1
2
𝜋, which is equivalent to the

flaw in Randolph & Houlsby’s original construction (which is recovered here when

𝛽2 → 1
2
𝜋 cos−1 𝜆).

Region 𝐸𝐹𝐷𝐺𝐻𝐼

This region has circular 𝛼−lines centred at 𝑃 . The radius 𝑟𝑝 of each is given by

𝑟𝑝 = 𝜆(𝛽2 − Θ + cot 𝛽2), 𝑟
EI
< 𝑟𝑝 < 𝑟

DG
. (A.44)

The local dissipation rate is

�̇� =

⃒⃒⃒⃒
𝜕𝑣𝛼
𝜕𝑟𝑝

− 𝑣𝛼
𝑟𝑝

⃒⃒⃒⃒
. (A.45)
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Since there is no angle dependence, the net dissipation rate is given by

∫︁ ∫︁
𝐸𝐹𝐷𝐺𝐻𝐼

�̇�d𝑥d𝑦 = (𝜋 − 𝛽2)

∫︁ 𝑟
DG

𝑟
EI

�̇�𝑟𝑝d𝑟𝑝 (A.46)

=
1√
2

(𝜋 − 𝛽2)(𝑟DG
− 𝑟

FH
) + (𝜋 − 𝛽2)

∫︁ 𝜃
E

𝜃
B

|(𝛽2 − Θ + cot 𝛽2) sin 𝜃 − cos 𝜃|d𝜃.(A.47)

Like in region 𝐸𝐵𝐹 , the shear rate �̇�𝜗𝜛 again becomes inconsistent with 𝜏𝜗𝜛 = −Bi

for 𝛽2 > 1
2
𝜋.

Velocity jumps

Along 𝐶𝐷𝐺, there is a tangential velocity jump of −1/
√

2 and a shear stress of −Bi,

leading to a net dissipation rate of

1√
2

Bi[(𝜋 − 𝛽2)𝑟DG
+ ℓ

FG
], (A.48)

where

ℓ
CD

= 1
2
𝜆(𝛽2 − 1

4
𝜋)(𝛽2 − 1

4
𝜋 + 2) (A.49)

is the length of the involute 𝐶𝐷. Along 𝐵𝐹𝐻, the velocity jump of 1/
√

2−𝜆−1 cos 𝜃
B

and shear stress of −Bi, give a contribution

(︂
1

𝜆
cos 𝜃

B
− 1√

2

)︂
ℓ
BFH

Bi =

(︂
1

𝜆
cos 𝜃

B
− 1√

2

)︂
[ℓ

BF
+ 𝑟

FH
(𝜋 − 𝛽2)]Bi, (A.50)

with

ℓ
BF

= 1
2
𝜆(𝛽2 − 1

4
𝜋)(𝛽2 + 2 tan Ψ − 1

4
𝜋). (A.51)
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Next, along 𝐵𝐶, the velocity jumps by −1/
√

2 and the shear stress is −Bi, so there

is a contribution

1√
2
ℓ
BC

Bi =
1√
2

Bi(𝜆−
√

1 − 𝜆2). (A.52)

Finally, there are the partially slipping boundary layers along 𝐸𝐵 and 𝐴𝐸. Here,

𝜏𝑟𝜃 = 𝜚Bi and the angular velocity jump is tan Ψ cos 𝜃+sin 𝜃 = 𝜆−1 sin(𝜃+Ψ) for 𝐸𝐵

and 𝜆−1 sin 𝛽2 for 𝐴𝐸. The the net dissipation rates are given by

𝜚

𝜆
Bi

∫︁
𝐸𝐵

sin(𝜃 + Ψ)d𝜃 =
𝜚

𝜆
Bi

(︂
1√
2
− cos 𝛽2

)︂
(A.53)

and

𝜚

𝜆
Bi
(︀
1
2
𝜋 − 𝜃

E

)︀
sin 𝛽2. (A.54)
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Appendix B
This appendix is associated with Chapter 3.

B.1 Formulas for Λ, 𝜏 and 𝜅

For a sphere of radius 𝑅, (Λ, 𝜏, 𝜅) are related to (Γ0,Γ2,Γ4) as follows [66]:

Λ =
2𝜋𝑅

2
√︁

17
4
− Γ2

2Γ4
𝑅2 − 1

, (B.1a)

𝜏 =

[︂(︂
Γ2

2Γ4

− 2

𝑅2

)︂(︂
Γ0 −

Γ2
2

4Γ4

)︂]︂−1

, (B.1b)

𝜅 =

(︃
17

2𝑅2
− Γ2

Γ4

− 2

√︃
172

16𝑅4
− 17

4𝑅2

Γ2

Γ4

+
Γ0

Γ4

)︃1/2

. (B.1c)

Letting 𝑅 → ∞ in (B.1), one obtains for the planar case [18]

Λ = 𝜋

√︂
2Γ4

−Γ2

, 𝜏 =

[︂
Γ2

2Γ4

(︂
Γ0 −

Γ2
2

4Γ4

)︂]︂−1

, 𝜅 =

(︃
−Γ2

Γ4

− 2

√︂
Γ0

Γ4

)︃1/2

. (B.2)

B.2 Total angular momentum

Taking the surface mass density to be 1, the total angular momentum is given by

𝑀(𝑡) =

∫︁ 𝜋

0

∫︁ 2𝜋

0

𝑑𝐴 (𝑅 sin 𝜃𝑣𝜑) =

∫︁ 𝜋

0

𝑑𝜃

∫︁ 2𝜋

0

𝑑𝜑 (𝑅3 sin2 𝜃𝑣𝜑)

=

∫︁ 𝜋

0

𝑑𝜃

∫︁ 2𝜋

0

𝑑𝜑
[︀
𝑅3 sin2 𝜃(−𝜕𝜃𝜓/𝑅)

]︀
= −𝑅2

∫︁ 𝜋

0

𝑑𝜃

∫︁ 2𝜋

0

𝑑𝜑 (sin2 𝜃𝜕𝜃𝜓). (B.3)
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Applying integration by parts for the 𝜃−integral,

𝑀(𝑡) = −𝑅2

∫︁ 2𝜋

0

𝑑𝜑

{︂∫︁ 𝜋

0

𝑑𝜃 sin2 𝜃𝜕𝜃𝜓

}︂
= −𝑅2

∫︁ 2𝜋

0

𝑑𝜑

{︂[︀
sin2 𝜃𝜓

]︀𝜋
0
−
∫︁ 𝜋

0

𝑑𝜃 (2𝜓 sin 𝜃 cos 𝜃)

}︂
= 2𝑅2

∫︁ 2𝜋

0

𝑑𝜑

∫︁ 𝜋

0

𝑑𝜃(𝜓 sin 𝜃 cos 𝜃). (B.4)

We may expand the stream function as 𝜓(𝜃, 𝜑) =
∑︀

ℓ,𝑚 𝜓
𝑚
ℓ (𝑡)𝑌 𝑚

ℓ (𝜃, 𝜑). The 𝜑−integral

survives only for 𝑚 = 0 and 𝑌 0
ℓ (𝜃, 𝜑) = 𝑃 0

ℓ (cos 𝜃) where 𝑃 represents the associated

Legendre polynomials. Also realizing that 𝑃 0
1 (cos 𝜃) = cos 𝜃, we get

𝑀(𝑡) = 4𝜋𝑅2
∑︁
ℓ

𝜓0
ℓ (𝑡)

{︂∫︁ 𝜋

0

𝑑𝜃 𝑃 0
1 (cos 𝜃)𝑃 0

ℓ (cos 𝜃) sin 𝜃

}︂
. (B.5)

Finally, using the orthogonality relation

∫︁ 𝜋

0

𝑑𝜃 𝑃𝑚
𝑘 (cos 𝜃)𝑃𝑚

ℓ (cos 𝜃) sin 𝜃 =
2(ℓ+𝑚)!

(2ℓ+ 1)(ℓ−𝑚)!
𝛿𝑘,ℓ, (B.6)

we obtain

𝑀(𝑡) =
8𝜋

3
𝑅2𝜓0

1(𝑡). (B.7)

Following the results by Lynch [184], it can be shown that there is no contribution

to 𝜓0
1(𝑡) from any triad interactions that result from the nonlinear dynamics. To

see this, we let 𝜓𝑚𝛾

𝑙𝛾
(𝑡) = 𝜓0

1(𝑡) which interacts with coefficients 𝜓𝑚𝛼
ℓ𝛼

and 𝜓
𝑚𝛽

ℓ𝛽
. For

a non-vanishing triad interaction, the necessary conditions, |ℓ𝛼 − ℓ𝛽| < ℓ𝛾 = 1 and

ℓ𝛼 ̸= ℓ𝛽, cannot be simultaneously satisfied for ℓ𝛾 = 1. Additionally, equation (3.5)

shows that the GNS forcing is zero for ℓ = 1. Thus, 𝜓0
1(𝑡) remains constant and the

total angular momentum is conserved.
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Appendix C
This appendix is associated with Chapter 4.

C.1 Methods

C.1.1 Particle simulations

The microscopic model in Eqs. (4.1) has been previously studied for fixed particle

velocities 𝑣𝑖 = 𝑣0 and rotation frequencies Ω𝑖 = Ω0. In this scenario, particles form

small clusters of aligned particles and each cluster orbits on a circle of radius ∼
𝑣0/Ω0 [159]. To generate the microscopic test data used in Sec. 4.2.4, we considered

instead a heuristic distribution 𝑝(𝑣𝑖,Ω𝑖) for which particles spontaneously organize

into proper vortices (Fig. 4-2a, top). It is convenient to define and draw from this

distribution using propagation speeds 𝑣𝑖 and the curvature radii 𝑅𝑖 = 𝑣𝑖/Ω𝑖 of a

particle’s noise-free trajectory as independent variables. In particular, we considered

𝑝(𝑣𝑖, 𝑅𝑖) ∼ 𝑔(𝑣𝑖;𝜇𝑣, 𝜎𝑣)𝑔(𝑅𝑖;𝜇𝑅, 𝜎𝑅), where 𝑔(𝑥;𝜇𝑥, 𝜎𝑥) represents a Gaussian normal

distribution with mean 𝜇𝑥 and standard deviation 𝜎𝑥. 𝑝(𝑣𝑖, 𝑅𝑖) then defines 𝑝(𝑣𝑖,Ω𝑖)

implicitly through the relation 𝑣𝑖 = Ω𝑖𝑅𝑖. In units of the characteristic scales – mean

velocity ⟨𝑣𝑖⟩𝑝 and interaction radius 𝑅 – the particle properties 𝑣𝑖 and Ω𝑖 = 𝑣𝑖/𝑅𝑖

used for simulating Eqs. (4.1) (Fig. C-1) were drawn from 𝑝(𝑣𝑖, 𝑅𝑖) with 𝜇𝑣 = 1

(⟨𝑣𝑖⟩𝑝 = ⟨𝑣𝑖⟩𝑝 = 1), 𝜎𝑣 = 0.4, 𝜇𝑅 = 2.2 and 𝜎𝑅 = 1.7. From these samples, we finally

removed all particles with Ω𝑖 > 1.4.

For simulations of the microscopic model in Eqs. (4.1), we set 𝑔 ≃ 0.35 and

𝐷𝑟 ≃ 0.009 (⇒ 𝐷𝑟 ≪ ⟨Ω𝑖⟩𝑝, 𝐷𝑟 ≪ ⟨𝑣𝑖⟩𝑝) and initially placed particles randomly

distributed and oriented on a domain of size 100×100 (in units of the interaction

radius). Equations (4.1) were then numerically integrated using the Euler-Maruyama
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Figure C-1: Distribution of particle speeds 𝑣𝑖 and rotation rates Ω𝑖 used to simulate
Eqs. (4.1). Those parameters were drawn from a heuristic distribution 𝑝(𝑣𝑖,Ω𝑖) that
is explained in more detail in Sec. C.1.1. The white marker and dashed lines depict
the mean velocity ⟨𝑣𝑖⟩𝑝 ≃ 1 and ⟨Ω𝑖⟩𝑝 ≃ 0.45.

method with a time step of 𝑑𝑡 ≃ 0.0176. For the subsequent coarse-graining, the data

were saved at time intervals of ∆𝑡 ≃ 0.44.

C.1.2 Kernel coarse-graining with periodic and non-periodic

boundaries

To coarse-grain the discrete microscopic data through Eqs. (4.2), we used a 2D Gaus-

sian kernel

𝐾(x) = (2𝜋𝜎2)−1 exp (−|x|2/2𝜎2). (C.1)

Periodicity of the coarse-grained fields for the microscopic test data (Sec. 4.2.2) was

ensured by placing ghost particles periodically around the domain.

Coarse-graining in non-periodic domains (Sec. 4.3) was performed by truncating

and renormalizing the kernel. This was achieved by defining the integral over the non-

periodic domain 𝒳 to be 𝑁(x) =
∫︀
𝒳 𝑑

2x′𝐾(x′ − x), and then replacing 𝐾[x− x𝑖(𝑡)]

with 𝐾[x − x𝑖(𝑡)]/𝑁(x𝑖(𝑡)) in Eqs. (4.2). This renormalization ensured that the
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coarse-grained density 𝜌(𝑡,x) integrated to the total particle number and strongly

reduced artefacts near the boundary.

C.1.3 Spectral representation

The coarse-grained hydrodynamic fields [Eq. (4.2)] were evaluated at [𝑁𝑡, 𝑁𝑥, 𝑁𝑦]

uniformly spaced grid points in the respective directions. The resulting discrete data

were projected onto the spectral basis functions [Eq. (4.3)] using multidimensional

discrete cosine and Fourier transforms provided by the FFTW library [185], with an

efficient time complexity of 𝑂(𝑁 log(𝑁)), where 𝑁 = 𝑁𝑡𝑁𝑥𝑁𝑦. For the Chebyshev

transforms, the data were interpolated onto the required Chebyshev extrema grid

using spline functions of degree 5.

C.1.4 Sparse regression

To perform sparse regression using the sequentially thresholded least squares (STLSQ)

algorithm [56], we used the same parameters when working with data from the test

microscopic model (Sec. 4.2.1) as well as the Quincke roller experiments (Sec. 4.3).

The details of various steps in the learning framework are provided below.

Construction of linear systems: To construct the linear system U𝑡 = Θ𝜉, we

randomly sampled the coarse-grained fields at 𝑁𝑑 = 5 × 105 time-space points. The
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explicit form of the linear systems constructed for Eqs. (4.4) was given by

⎡⎢⎢⎢⎣
...

𝜕𝑡𝜌
...

⎤⎥⎥⎥⎦
⏟  ⏞  
U𝑡(𝑁𝑑×1)

=

⎡⎢⎢⎢⎣
...

...

∇ · p · · · ∇ · (𝜌p⊥)
...

...

⎤⎥⎥⎥⎦
⏟  ⏞  

Θ(𝑁𝑑×𝑟)

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎1

𝑎2
...

𝑎𝑟

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  
𝜉(𝑟×1)

, (C.2a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑡𝑝𝑥
...

𝜕𝑡𝑝𝑦
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  
U𝑡(2𝑁𝑑×1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∇𝜌)𝑥 · · · ((p · ∇)p)𝑥
...

...

(∇𝜌)𝑦 · · · ((p · ∇)p)𝑦
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

Θ(2𝑁𝑑×𝑚)

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏1

𝑏2
...

𝑏𝑚

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  
𝜉(𝑚×1)

. (C.2b)

Here, the subscripts denote components of the vectors, and 𝑟,𝑚 are the total number

of library terms in each equation. The vertical dots denote the respective terms

evaluated at different time-space (𝑡,x) locations. The linear system in Eq. (C.2b)

was generated by stacking data for the 𝑥- and 𝑦-components of the time-derivatives

and the library terms. Such a construction enforced the same coefficients for both the

components of the polarization equation, ensuring rotational invariance (coordinate-

independence) of the learned PDE.

Pre-processing: Since the thresholding hyperparameter 𝜏 in STLSQ is agnostic

to the scales of the library terms, as a pre-processing step, we performed transforma-

tions so that columns of the data matrix Θ had zero mean and unit variance, and

the time-derivative vector U𝑡 had zero mean.

Stability selection [64]: With equal spacing on a log10 scale, we chose 40 values

for 𝜏 over the regularization path [𝜏max, 𝜖𝜏max]. The value of 𝜏max was chosen so that all

the terms get thresholded out and 𝜖 was set to 10−2. For every 𝜏 , the data were split

into 200 sub-samples each with 50% randomly selected data points. Every library

term was assigned an importance score as the fraction of sub-samples in which it was

learned by STLSQ; in general, this importance score was larger for smaller values of 𝜏 .
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Along the regularization path, unique combinations of terms that had an importance

score larger than 0.6 were considered and their coefficients were refitted to the full

data without normalization. This procedure resulted in a small number of PDEs of

increasing complexity (Figs. 4-2e, 4-3d, and 4-4d).

C.1.5 Linear dependencies of the library terms

The procedure outlined in Sec. 4.2.4 leads to a few library terms for the polarization

dynamics [Eq. (4.4b)] that are linearly dependent on each other. For completeness,

we provide here a list of identities that can be used to eliminate these dependen-

cies. Terms with ∇⊥ can be replaced with those involving ∇ by using the following

relations:

∇⊥ · p = −∇ · p⊥, (C.3a)

∇⊥ · p⊥ = ∇ · p, (C.3b)

p · ∇⊥ = −p⊥ · ∇, (C.3c)

p⊥ · ∇⊥ = p · ∇, (C.3d)
1

2
∇⊥|p|2 = (∇ · p)p⊥ − (p⊥ · ∇)p, (C.3e)

∇⊥(∇ · p) = ∆p⊥ −∇(∇ · p⊥), (C.3f)

∇⊥p⊥ = (∇ · p)I− (∇p)⊤. (C.3g)
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One may set p → p⊥ and p⊥ → −p in Eqs. (C.3f) and (C.3g) to obtain two more

relations. Additional linear dependencies are given by the following identities:

1

2
∇|p|2 = (∇p) · p, (C.4a)

= (p · ∇)p + (∇ · p⊥)p⊥, (C.4b)

∇ · (pp) = (p · ∇)p + (∇ · p)p, (C.4c)

∇ · (pp⊥) = (p · ∇)p⊥ + (∇ · p)p⊥, (C.4d)

(∇ · p)p⊥ = (∇p) · p⊥ + (p · ∇)p⊥, (C.4e)

(p · ∇)p⊥ + (p⊥ · ∇)p

= (∇ · p)p⊥ + (∇ · p⊥)p, (C.4f)

(∇p⊥) · p = − (∇p) · p⊥. (C.4g)

In Eq. (C.4e), we follow the convention, [(∇a)·b]𝑖 = 𝑏𝑗𝜕𝑖𝑎𝑗, with 𝑖 = 𝑥, 𝑦 and repeated

indices indicating summation. One may set p → p⊥ and p⊥ → −p in Eqs. (C.4a)

and (C.4e) to obtain two additional identities.

To ensure in general that no linear dependencies remain after a library of terms

has been constructed, it should be checked that the columns the data matrix Θ are

linearly independent, that is, Θ is full rank. This maybe achieved by, for example, a

singular value decomposition of Θ.

C.1.6 Continuum simulations

Continuum simulations were performed using the spectral PDE solver Dedalus [129]

with four-step Runge-Kutta time stepping scheme RK443. For simulation of the PDEs

learned from the microscopic test data (Fig. 4-3e) we used 256 × 256 Fourier modes

in a doubly periodic domain with time step 4×10−3. To facilitate a comparison, sim-

ulations shown in Fig. 4-3e were initialized using the initial density and polarization

field of the coarse-grained particle data. It was verified that similar vortex patterns

also form from fully random initial conditions.

For the doubly periodic simulation of Eqs. (4.6) (Fig. 4-4e), we used 1024 ×
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1024 Fourier modes and time step 10−4s. The initial conditions were random with

mean density 0.11, and mean horizontal and vertical velocities, ⟨𝑣𝑥⟩ = 0.1 mm s−1 and

⟨𝑣𝑦⟩ = 0, respectively.

The simulation presented in Fig. 4-4f was performed on a confined square domain

using the Sine/Cosine basis functions with 1024 × 1024 modes and time step 10−4s.

The basis combinations in the (𝑥, 𝑦) directions were chosen to be (cos, cos) for density

𝜌, (sin, cos) for 𝑣𝑥 and (cos, sin) for 𝑣𝑦. These imply that normal density gradients,

normal velocities and all remaining shear rates 𝜕𝑥𝑣𝑦 and 𝜕𝑦𝑣𝑥 vanish at the domain

boundaries. The simulations were initialized with random perturbations around a

mean density of 0.11.

Since the learned model in Eqs. (4.6) generates density shock waves, we added

numerical diffusivities of 10−4mm2/s (Fig. 4-4e) and 10−3mm2/s (Fig. 4-4f) in both

density and velocity equation to avoid Gibbs ringing.

C.2 Analytic coarse-graining of the particle model

We describe two approaches to analytically determine mean-field approximations of

the microscopic model Eqs. (4.1). These approaches (𝑖) provide guidance for de-

veloping a physics-informed learning library, (𝑖𝑖) allow discussing our PDE learning

framework as a tool to effectively infer moment closure relations, and (𝑖𝑖𝑖) predict the

dependency of certain PDE coefficients on distributions of microscopic parameters,

which can be used to validate learned hydrodynamic models.

C.2.1 Dynamic equation of the one-particle probability den-

sity

A commonly used approach to determine mean-field description of models such as

Eqs. (4.1) is to find an approximate dynamic equation for the one-particle probability
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density [186, 36, 37, 11, 38, 159]

𝑓(𝜃,x, 𝑡) =
𝑁∑︁
𝑖=1

⟨𝛿 (𝜃 − 𝜃𝑖(𝑡)) 𝛿 (x− x𝑖)⟩, (C.5)

where ⟨·⟩ denotes a Gaussian white noise average. Neglecting multiplicative noise and

factorizing pair-correlations gives rise to a nonlinear integro-differential equation [37,

159] that can be transformed into an infinite hierarchy of coupled PDEs for the angular

moments 𝑓𝑛(x, 𝑡) defined by

𝑓𝑛(x, 𝑡) =

∫︁ 2𝜋

0

𝑑𝜃𝑓(𝜃,x, 𝑡)𝑒𝑖𝑛𝜃. (C.6)

For the microscopic model Eqs. (4.1) and equal swimming parameters 𝑣𝑖 = 𝑣0 and

Ω𝑖 = Ω0 for all particle, this procedure leads to [37, 159]

𝜕𝑡𝑓𝑛 +
𝑣0
2

[𝜕𝑥 (𝑓𝑛+1 + 𝑓𝑛−1) − 𝑖𝜕𝑦 (𝑓𝑛+1 − 𝑓𝑛−1)]

= 𝑛(𝑖Ω0 −𝐷𝑟𝑛)𝑓𝑛 +
𝑔𝑛𝜋

2
(𝑓𝑛−1𝑓1 − 𝑓𝑛+1𝑓−1) . (C.7)

Each complex angular moment 𝑓𝑛 can be identified as a mean-field variable that

represents different orientational order parameters encoded by the probability density

𝑓(𝜃,x, 𝑡) [11]. In particular, 𝑓0 represents the particle number density 𝜌 and 𝑓1 =:

𝑝𝑥 + 𝑖𝑝𝑦 represents the polarization density p = (𝑝𝑥, 𝑝𝑦)
⊤. These fields correspond

to the coarse-graining information in Eqs. (4.2) that our learning framework extracts

explicitly from given microscopic data. For 𝑛 = 0 and 𝑛 = 1, we can therefore write

Eqs. (C.7) as

𝜕𝑡𝜌+ 𝑣0∇ · p = 0, (C.8a)

𝜕𝑡p +
𝑣0
2

(∇𝜌+ ∇ ·Q) = Ω0p⊥ −𝐷𝑟p +
𝑔𝜋

2
(𝜌I−Q) · p, (C.8b)

which also shows the coupling to the next higher mode 𝑓2 =: 𝑄𝑥𝑥 + 𝑖𝑄𝑥𝑦, correspond-

ing to the independent degrees of freedom of a nematic tensor. The chiral term
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∼ Ω0p⊥ with p⊥ = (−𝑝𝑦, 𝑝𝑥)⊤ breaks the mirror symmetry. Terms constructed from

p⊥ are therefore generally allowed in chiral systems and consequently included into

the library in Eqs. (4.4).

The final step that is key to analytically close the infinite hierarchy of Eqs. (C.7)

requires the introduction of moment closure assumptions [36, 37, 9]. Depending on

the structure of the mode coupling, the resulting closure relation allows to express

the nearest coupled modes with |𝑛| = 𝑘 in terms of modes |𝑛| < 𝑘 and neglects the

remaining modes. For example, in the case of Eq. (C.8) a moment closure assumption

must provide an expression Q(𝜌,p) [37, 9]. Our framework does not require explicit

closure assumptions but instead takes a different route by inferring – directly from the

data – an effective closure relation that best explains the observed systems dynamics.

C.2.2 Dynamic equations from conventional kernel coarse-graining

While the previous approach provides a clear coarse-graining strategy to find a closed

set of PDEs from a system of stochastic ODEs with homogeneous microscopic param-

eters, it is more challenging to understand how the phenomenological coefficients will

depend on the distribution 𝑝(𝑣𝑖,Ω𝑖) of microscopic kinetic parameters described in

Sec. C.1.1. We therefore consider an alternative strategy, for which we write Eqs. (4.1)

as

𝑑x𝑖

𝑑𝑡
= 𝑣𝑖p𝑖, (C.9a)

𝑑p𝑖

𝑑𝑡
= Ω𝑖𝜖 · p𝑖 + F𝑖, (C.9b)

where 𝜖 · p𝑖 = p𝑖,⊥ = (− sin 𝜃𝑖, cos 𝜃𝑖)
⊤, and F𝑖 contains forces from interactions

and rotational diffusion. Taking directly the time derivative of the coarse-graining

prescription in Eq. (4.2a) and using Eq. (C.9a), we find

𝜕𝑡𝜌(𝑡,x) + ∇ · J(𝑡,x) = 0, (C.10)
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where we have defined a flux

J(𝑡,x) =
∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣𝑖p𝑖(𝑡). (C.11)

Using this definition and Eq. (C.9b), we find a dynamic equation for J of the form

𝜕𝑡J(𝑡,x) + ∇ · 𝜎(𝑡,x) = T(𝑡,x) + Φ(𝑡,x). (C.12)

Here, we have defined the tensor and vector fields

𝜎(𝑡,x) =
∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣
2
𝑖 p𝑖(𝑡)p𝑖(𝑡), (C.13a)

T(𝑡,x) = 𝜖 ·
∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣𝑖Ω𝑖p𝑖(𝑡), (C.13b)

Φ(𝑡,x) =
∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣𝑖F𝑖(𝑡). (C.13c)

Averaging the fields in Eq. (C.11) and Eqs. (C.13) over the particle parameter distri-

bution 𝑝(𝑣𝑖,Ω𝑖) yields

⟨J(𝑡,x)⟩𝑝 =

⟨∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣𝑖p𝑖(𝑡)

⟩
𝑝

, (C.14a)

⟨𝜎(𝑡,x)⟩𝑝 =

⟨∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣
2
𝑖 p𝑖(𝑡)p𝑖(𝑡)

⟩
𝑝

, (C.14b)

⟨T(𝑡,x)⟩𝑝 =

⟨
𝜖 ·
∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣𝑖Ω𝑖 p𝑖(𝑡)

⟩
𝑝

, (C.14c)

⟨Φ(𝑡,x)⟩𝑝 =

⟨∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] 𝑣𝑖F𝑖(𝑡)

⟩
𝑝

. (C.14d)
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We then adopt a moment factorization approximation

⟨J(𝑡,x)⟩𝑝 ≃ ⟨𝑣𝑖⟩𝑝p, (C.15a)

⟨𝜎(𝑡,x)⟩𝑝 ≃
1

2
⟨𝑣2𝑖 ⟩𝑝 (𝜌I + Q) , (C.15b)

⟨T(𝑡,x)⟩𝑝 ≃ ⟨𝑣𝑖Ω𝑖⟩𝑝p⊥, (C.15c)

where we used the definition of the particle number density in Eq. (4.2a), the polariza-

tion density in Eq. (4.2b), and |p𝑖|2 = 1. Additionally, we have defined in Eq. (C.15b)

a nematic moment of the form

Q =
∑︁
𝑖

𝐾 [x− x𝑖(𝑡)] [2p𝑖(𝑡)p𝑖(𝑡) − I] . (C.16)

Finally, averaging Eqs. (C.10) and (C.12) over the microscopic parameter distributions

and using Eqs. (C.15), we obtain

𝜕𝑡𝜌+ ⟨𝑣𝑖⟩𝑝∇ · p = 0, (C.17a)

𝜕𝑡p +
⟨𝑣2𝑖 ⟩𝑝
2⟨𝑣𝑖⟩𝑝

(∇𝜌+ ∇ ·Q) =
⟨𝑣𝑖Ω𝑖⟩𝑝
⟨𝑣𝑖⟩𝑝

p⊥ + ⟨𝑣𝑖⟩−1
𝑝 ⟨Φ⟩𝑝. (C.17b)

From this, we can read of predictions about the coefficients we expect to find by the

learning framework for the terms ∇ · p, ∇𝜌 and p⊥ (Tab. 4.1).

C.3 Parameters of learned models

The parameters of the PDEs learned from simulations of the active polar particle

model in Eq. (4.1) are summarized in Tab. C.1 (density dynamics) and Tab. C.2 (po-

larization dynamics). For the experimental Quincke roller system [9], the learned hy-

drodynamic model parameters are given in Tab. C.3 (density dynamics) and Tab. C.4

(velocity dynamics).
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Table C.1: Parameters 𝑎𝑙 of the density dynamics PDE (Fig. 4-2d) learned from simulations the
microscopic active particle system in Eq. (4.1). The sparsest model (J) agrees well with the analytic
coarse-graining prediction (Tab. 4.1).

Term PDE 1J PDE 2 PDE 3 PDE 4
𝑎1∇ · p -0.991 -0.991 -0.972 -0.957
𝑎2∆𝜌 – – – –
𝑎3∇ · (𝜌p) – – -0.015 -0.037
𝑎4∆𝜌

2 – 0.022 0.022 0.022
𝑎5∆|p|2 – – – –
𝑎6∇ · (𝜌2p) – – – 0.008
𝑎7∆𝜌

3 – – – –
𝑎8∇ · (|p|2p) – – – –
𝑎9∇ · (𝜌∇|p|2) – – – –
𝑎10∇ · (|p|2∇𝜌) – – – –
𝑎11∇ · p⊥ – – – –
𝑎12∇ · (𝜌p⊥) – -0.026 -0.026 -0.026
𝑎13∇ · (𝜌2p⊥) – – – –
𝑎14∇ · (|p|2p⊥) – – – –

Table C.2: Parameters 𝑏𝑙 of the nine sparsest PDEs for the polarization dynamics (Fig. 4-3c), learned
from simulations of the microscopic system in Eq. (4.1). PDE 8 (J) reproduces the characteristic
vortex dynamics as in the microscopic simulations (Fig. 4-3a,b,e) and the coefficients of the linear
terms compare well with analytic coarse-graining predictions (Tab. 4.1).

Term PDE 1 PDE 2 PDE 3 PDE 4 PDE 5 PDE 6 PDE 7 PDE 8J PDE 9
𝑏1p -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009
𝑏2𝜌p – – – 0.013 0.013 0.013 0.007 0.009 0.009
𝑏3p⊥ 0.414 0.476 0.477 0.428 0.478 0.436 0.436 0.440 0.441
𝑏4𝜌p⊥ – -0.050 -0.040 – -0.040 -0.006 -0.006 -0.010 -0.012
𝑏5|p|2p – – – – – – – -0.080 -0.080
𝑏6|p|2p⊥ – – – – – – – – 0.054
𝑏7∇𝜌 -0.638 -0.637 -0.600 -0.595 -0.601 -0.596 -0.596 -0.595 -0.595
𝑏8(p · ∇)p – – – -0.536 – -0.510 -0.510 -0.463 -0.479
𝑏9(p · ∇)p⊥ – – – – – – – – –
𝑏10(p⊥ · ∇)p – – – – – – – – –
𝑏11∇(∇ · p) – – – – – – – 0.078 0.077
𝑏12∇(∇ · p⊥) – – 0.225 0.265 0.248 0.265 0.270 0.277 0.277
𝑏13∆p – – – – – – -0.151 -0.155 -0.156
𝑏14∆p⊥ – – 0.252 0.202 0.222 0.203 0.198 0.196 0.197
𝑏15∇|p|2 – – – – – – – – –
𝑏16(∇ · p)p – – – – – – – -0.225 -0.213
𝑏17(∇ · p)p⊥ – – – – – – – – –
𝑏18∆

2p – – – – – – -0.475 -0.483 -0.484
𝑏19∆

2p⊥ – – 1.100 1.197 1.085 1.212 1.215 1.235 1.243
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Table C.3: Parameters 𝑐𝑙 of the PDE for the density dynamics (Fig. 4-4c) learned from experimental
data for self-propelled Quincke rollers (Supplementary Movie S2 of Ref. [9]). The dimensions of the
coefficients are such that [v] =mm/s and [𝜌] = 1, where the density 𝜌 represents the area fraction
of rollers of diameter 𝐷𝑐 = 4.8 µm. The four sparsest PDEs are shown corresponding to the cut-off
𝑛0 ∈ {50, 100} above which the temporal Chebyshev modes in Eq. (4.3) are set to zero to ignore high
frequencies. The sparsest PDEs (J) have coefficients close to each other and agree well with the mass
conservation equation obtained from analytic coarse-graining (Ref. [9]).

𝑛0 = 50 𝑛0 = 100
Term Unit PDE 1J PDE 2 PDE 3 PDE 4 PDE 1J PDE 2 PDE 3 PDE 4
𝑐1∇ · v – – – -0.052 -0.052 – -0.051 -0.051 -0.055
𝑐2∆𝜌 mm2 s−1 – 0.016 0.040 0.023 – 0.055 0.040 0.041
𝑐3∇ · (𝜌v) – -0.950 -0.950 -1.068 -1.067 -0.945 -1.057 -1.054 -0.985
𝑐4∆𝜌

2 mm2 s−1 – 0.047 0.080 0.081 – -0.076 -0.051 -0.062
𝑐5∆|v|2 s – – – 0.001 – – 0.001 0.001
𝑐6∇ · (𝜌2v) – – – – – – – – -0.313
𝑐7∆𝜌

3 mm2 s−1 – – – – – 0.427 0.341 0.366
𝑐8∇ · (|v|2v) mm−2 s2 – – 0.035 0.035 – 0.034 0.034 0.034
𝑐9∇ · (𝜌∇|v|2) s – – – -0.013 – – -0.008 -0.007
𝑐10∇ · (|v|2∇𝜌) s – -0.018 -0.039 -0.028 – -0.036 -0.028 -0.027

Table C.4: Parameters 𝑑𝑙 of the PDE for the velocity dynamics (Fig. 4-4c) learned from experimental
data for self-propelled Quincke rollers (Supplementary Movie S2 of Ref. [9]). The dimensions of the
coefficients are such that [v] =mm/s and [𝜌] = 1, where the density 𝜌 represents the area fraction
of rollers of diameter 𝐷𝑐 = 4.8 µm. The four sparsest PDEs are shown corresponding to the cut-off
𝑛0 ∈ {50, 100} above which the temporal Chebyshev modes in Eq. (4.3) are set to zero to ignore high
frequencies. The sparsest PDEs which reproduce the experimental observations (J) have coefficients
that are close to each other for different values of 𝑛0, and they agree well with corresponding values
reported in Ref. [9] (Tab. 4.2).

𝑛0 = 50 𝑛0 = 100
Term Unit PDE 1 PDE 2J PDE 3 PDE 4 PDE 1 PDE 2J PDE 3 PDE 4
𝑑1v s−1 – 2.281 1.524 1.491 – 1.825 1.252 1.122
𝑑2𝜌v s−1 – 8.356 5.156 4.745 – 6.135 3.143 3.083
𝑑3|v|2v mm−2 s – -2.194 -1.436 -1.382 – -1.710 -1.095 -0.999
𝑑4∇𝜌 mm2 s−2 – -1.620 -1.711 -2.074 – -1.689 -2.438 -2.430
𝑑5(v · ∇)v – -0.639 -0.674 -0.678 -0.679 -0.662 -0.696 -0.702 -0.702
𝑑6∇(∇ · v) mm2 s−1 – – – – – – – –
𝑑7∆v mm2 s−1 – – – – – – – 0.002
𝑑8∇(|v|2) – – – – 0.090 – – 0.169 0.168
𝑑9(∇ · v)v – – – -0.189 -0.190 – – -0.178 -0.179
𝑑10∆

2v mm4 s−1 – – – – – – – 0.000
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